EPIC HPDIRC

> Radiator bars:

- Size: 4580mm x 35mm x 17mm (L x W x T)
- Barrel: 700mm radius, 12 bar boxes, 10 long bars per bar box \geq long bar: 4 bars glued end-to-end, flat mirror on far end baseline design: reuse of BaBar DIRC bars (R&D underway)
- Focusing optics: \triangleright

Radiation-hard 3-layer spherical lens (sapphire or PbF₂)

Expansion volume:

Solid fused silica prism: 24 x 36 x 30 cm³ (H x W x L)

Readout system: \geq

> MCP-PMT Sensors (~3x3mm² pixels) ASIC-based Electronics (~74k channels)

Many core design aspects, as well as detailed Geant simulation, \geq validated in joint beam tests with PANDA Barrel DIRC (prototype tests in cosmic rays and test beams in preparation)

Focusing

Lens

Radiator bar

ou

ectro

ົດ

HPDIRC SENSOR/READOUT REQUIREMENTS

Efficient single photon detection: rms timing precision per photon <100 ps Note: 100 ps for entire chain (sensor \oplus readout \oplus sync.), ~10⁶ gain, small signals (few mV) Small pixels: pixel size ~3mmx3mm, sensors tiled, minimize gaps between sensors Very tight space in readout region: compact card/cable configuration needed High photon yield: need tolerance for high occupancy per sensor Long photon propagation paths in bar: need low dark count rates (coincidence timing very difficult/impossible to use)

Geant4, single track particle gun, 2x3 configuration Uses QE/CE similar to PANDA Barrel DIRC sensors

R. Dzhygadlo, GSI

140

polar angle [deg]

160

