

Synergy between HGCROC and EICROC

Norbert Novitzky (ORNL)

ORNL is managed by UT-Battelle LLC for the US Department of Energy

HGCROC architecture

Existing ASIC for CMS, ALICE detectors

Overall chip divided in two symmetrical parts:

One half is made of:

- 39 channels (in CMS 36 channels, 1 Calib, 2 CMN)
- Bandgap, voltage reference close to the edge
- Bias, ADC reference, Master TDC in the middle
- Main digital block and 3 differential outputs (2 trigger, 1 data) **Measurements:**
- Charge:
 - ADC peak measurement, 10 bits at 40 MHz, different gain setups possible, 0.4fC resolution
 - TDC: (Time over Threshold), 12 bits, 2.5fC resolution
- Time:

Time of arrival, 10 bits (25ps)

Data flow:

- DAQ path:
 - 512 dept RAM1, circular buffer
 - Secondary RAM2, 32 dept
 - Store all channel data, ADC, TOA, TOT
 - Output 2x 1.28 Gbps links
- **Trigger path:**
 - Sum of 4 or 9 channels, linearization, compression to 7 bits
 - 4 x 1.28 Gbps links

Control:

- Fast commands, **40MHz and 320MHz clock**
- I2C for slow control

HGCROC for EIC use

There are 5 different phases of the signal sampled with the 40 MHz clock:

- The new version of the H2GCROCv3 can read out multiple consecutive bunch crossings
- For good signal reconstruction, we plan to save 3 (or 4) samples for each signal
- Total: 3 ADC, 3 TOA and 3 TOT values, 32bitx3 words for each physics signal

Signal from the shapers:

- SiPM response of the H2GCROCv3 (from CMS)
- Default configuration used

Can it be used with the EIC 100 MHz clock?

We can reconstruct the phases (using TOA) and the shower shape (ADC+TOT template fit) for the EIC 100 MHz clock

Data propagation from the detector to the EPIC DAQ system:

- The H2GCROC3 requires the L1 trigger for readout, with the maximum speed of 960 kHz \bullet
- The expected hit rate in **one channel of LFHCal** is up to 50 kHz:
 - With possible 4 sample readout we would reach a maximum of 200 kHz
 - Streaming readout towards the EPIC DAQ system

Internal calibration

Dynamic range of the HGCROC:

- Real data from the v2 chip
- Silicon variant
- ADC set to saturate around 850:
 - Small dip in the ADC happens when the TOT circuit comes online
 - TOT values are shown only to 100 (out of the 4095 range)
 - TOA have a small walk from threshold to 0.18 fC, then it is stable

We are currently working on the same data for the HGCROC chip

- Almost the full dynamic range. Reference voltage 0-1V:
 - 0.5 pF Low Range: 0 0.5 pC
 - 8 pF High Range: 0- 8 pC
- Calibration circuit injection value of 11-bit:

Zoom-in to the timing

The threshold can be set:

- One global value for 36 Channels (half of the chip)

Walk is minimal, can be adjusted with the ADC

At fixed injection value (in the stable region)

Some examples of the TOA timing distribution

Resolution extracted from 18 ASICs in series:

- Run by a Xilinx Ultrascale FPGA
- 18 in series (from 30cm to 10cm distance from FPGA-ASIC)
- Extracted the timing resolution where I could: 15-35 ps in general

Starting to test HGCROC3 with testing board

Testing the HGCROC feasibility for the EIC use:

- weeks)

Firmware on the KCU105 evaluation board is done by Omega. We are currently updating, upgrading the readout code.

• Carrier board (ordered 5 of them, delivery under progress from CERN) • Mezzanine board with HGCROC (ordered 5 of them for testing, delivery 4-5

Our plan for the FY2023

Milestones:

1. HGCROC basic tests: April 2023:

- Already started, trying to figure out the setups with the HGCROC
- too

2. Start of tests of HGCROC with SiPM: May 2023

- We also have a parasitic test beam in June at CERN for first real tests
- Comparison with the CAEN units (only ADC, there is no timing there)

3. Prototype PCB: September 2023

- We can produce one non-test board setup
- We have a possibility to have a parasitic testbeam in CERN again

4. Start of on-detector prototype PCB: October 2023

- Here we probably wanted 1-2, but we can add more (72ch/board)
- It is probably here where we could start to think to produce something for pfRICH
- 5. Firmware development: December 2023
- Beam tests: December 2023 6.
 - Dedicated for the LFHCAL module

• All documents are available from Omega, I shared it with some interested people from the Call Groups, I can share it here

Backups

Possible use of ECON-D in LFHCal

Figure 3 ECON-D Functional Block Diagram

Developed for CMS HGCal in Fermilab:

- First submission in March, we want 5-10 of them for testing at least
- Only "functionality" is zero suppression. In principle 12 lines in, 1-6 lines out (depends on the occupancy, how much zero suppressed data we need to ship out)
- Very radiation tolerant, would reduce a lot of cabling, services

This is just a thought: If we keep the same data format in **EICROC**, can this be used (maybe with modification)?

Possible use of ECON-T in LFHCal

Figure 3 ECON-T Functional Block Diagram

Developed for CMS HGCal in Fermilab:

- First submission in March, we want 5-10 of them for testing at least
- Very radiation tolerant, would reduce a lot of cabling, services
- Functionality sum up more channels, do some extra comparisons/algorithms. Not sure if it would be useful.
 - We plan to not ship out the trigger info, just to the FPGA

