Readout of PANDA MCP-PMTs

Albert Lehmann (Universität Erlangen-Nürnberg)

- Oscillation problems of former Photonis Planacon MCP-PMTs
- New Photonis Planacon MCP-PMTs with modified backplane
- DiRICH/TRB3 data acquisition system
- Application of DiRICH/TRB3 DAQ for quality control measurements of Photonis MCP-PMTs
- Summary

PANDA Detector at FAIR

Photonis 2-inch Multi-Anode MCP-PMTs

Photonis XP85112 (until ~2018)

- Burle Planacon layout
- 8x8 pixel anode grid
- 1-layer ALD coating (since ~2011)
- Active/total size: 53x53/59x59 mm²
- 81% fill factor (active area ratio)
- Pore size: 10 μm (and 25 μm)
- Normal QE (20 25%) and CE (~65%)
- Backplane with four 32-pin connectors (2 mm pitch)
- FEE usually connected by custombuilt adapter boards and/or cables

 Measured with scope (LeCroy WavePro 7300, 3 GHz)

- Very fast and short signals
- Falltime ~600 ps
- Risetime ~800 ps
- Width ~900 ps
- Mean pulse height at 10⁶ gain: ~25 mV
- P/V ratio at 1e6 gain: ~3

x-scale = 2 ns/div; y-scale = 10 mV/div

3

Albert Lehmann

- J. Vav'ra: "coherent excitations" in old (2005) Planacon tubes
- Not seen if only one pixel illuminated; shows up when several pixel hit simultaneously
- Various tests: illumination of 3 to 12 pixels (shadow mask) and full area at different intensities (neutral density filters) \rightarrow 3 pixels read out (e.g., trigger laser*px44)

RICH 2016: J. Vav'ra. NIM A876 (2017) 185

			pixel's read out							
	Photonis 9002108		11 21	12	13	14 24	15 25	0 26	17 27	18 28
		and the second se	31	82	33	34	35	36	37	38
	x: 5 ns/div		41	42	43	0	45	46	47	48
	y: 10 mV/div	Switten	51	52	53	54	55	56	57	56
			61	62	63	64	65	66	67	68
	Trigger:		71	72	73	74	75	Õ	77	78
	Laser * px44	l	81	82	83	84	85	86	87	88
ŀ	lamamatsu	Ì	08	CH7 0	СНБ	OHS	CH4	C	0.0	I chi

YH0250

x: 5 ns/div y: 10 mV/div

Trigger:

Laser * CH29

GIS	CH7	CHS	CH\$	C184	C	02	CHL			
CHIE	ଖାସ	CHL4	CH13	\bigcirc	o	X	в			
CH24	0123	(H22	\bigcirc	060	CHLB	CHIR	CH17			
CH32	(HBI	(HƏ)	0	add	CH27	CH26	CH25			
CH	X	68	O	365	CH3S	CH34	CH33			
CHIE	087	CHAS	CRAS	\bigcirc	Crill 3	CHIZ	CH41			
CHSE	×	CH54	CHS3	CH52	\bigcirc	X	CH49			
CHEA	CHE3	CH62	CHGI	0+60	CH59	\bigcirc	CH57			

Photonis 2-inch Multi-Anode MCP-PMTs

Coherent oscillations exist in many older MCP-PMTs

- Appear when several photons hit the same PMT simultaneously and/or at high intensities
- Could lead to detection of fake hits in other anode pixels
- Redesign of backplane: oscillations much lower

Phot. XP85122-S-BA (new)

- Same layout as old 2" Planacons
 - Delivery of first PMT: ~2018
 - 8x8 pixels; 81% fill factor; 10 μm pores
- 2-layer ALD coating and high QE
- Improvements to catch most recoil electrons of MCP-in → CE > 90%
 - D. Orlov et al., JINST 13 (2018) C01047

Albert Lehmann

 New backplane to reduce oscillations and crosstalk

Redesign of internal anode plane

• 75 Ohm resistor at each pad?

Two 2x52-pin Samtec sockets

- QRM8-052-05.0-L-D-A-GP
- Only ~every 3rd bin connected to anode
- Read out by FPGA-based DiRICH/TRB3 DAQ
 - DiRICH (32 chan./board; FPGA TDC)
 - Multi-hit capable (up to 127 hits/chan/trig)
 - Provides hit time stamps (TDC) and ToT

EICROC Meeting -- March 6, 2023

Photonis XP85132

- PANDA Endcap DIRC
- 3x100 pixel anode grid
- 1- (or 2-)layer ALD coatings
- Active/total size: 53x53/59x59 mm²
- 81% fill factor
- Pore size: 10 µm
- High QE (~30%) and CE > 90%
- Readout: taylored TOFPET ASIC
 [M.D. Rolo et al. JINST, 8 (2013) C02050]

9002108 (old backplane)

64 Pixels * 3 Photons/Pulse ≈ 200 Photons

9002150 (new backplane)

64 Pixels * 4 Photons/Pulse ≈ 250 Photons

- Red (632 nm) PiLas, 10 kHz, ALD coating, 1e6 gain, illumination of full sensor
- Oscillations clearly lower after backplane redesign
- 9002192 (masked): -- almost no signal at covered pixel (lower right, vellow trace) -- clean signals at the 12 illuminated pixels (blue and red trace)

Albert Lehmann

EICROC Meeting -- March 6, 2023

x: 10 ns/div y: 10 mV/div

Laser pulse

pixel's read out

23 24 25 26 27

Latest Photonis 9002192 with new backplane:

Trigger:

Crosstalk seen with DiRICH/TRB3 DAQ (A)

- Cover half of the MCP-PMT and read out only the 3 most left and right rows
- At different threshold: count the number of simultaneous hits in a 15 ns window around the laser peak on the covered and open side (24 pixels each)
- ND-Filter to get ~1 p.e./pixel (n_{pe}), adjust HV for similar pulse height distribution in both MCP-PMTs
- <u>Illuminated (open) half:</u> ~12 hits expected [24 pixels * (1- exp(-n_{pe}) with n_{pe} ~ 0.7] <u>Covered half:</u> only crosstalk ("fake") hits from oscillation should be seen

Crosstalk seen with DiRICH/TRB3 DAQ (B)

- 9002108: at low threshold crosstalk of up to 18 hits/laser pulse are observed 9002150: only up to 2 hits/laser pulse seen
- 9002150 also shows 25% lower crosstalk pulse height compared to 9002108
- New backplane of Photonis MCP-PMT reduced ringing and crosstalk
- Important lesson: careful backplane design is essential to avoid fake hits

🗧 DIRICH/TRB3 DAQ

FPGA based DAQ: TRB3, DiRICH, 4 PMTs/backplane

- Developed at GSI for HADES and CBM
- 32 chan. DiRICH FEE boards: amplification, discrimination, TDC, ToT
- 256 chan. TRB3: distribution of trigger signals and accumulation of data
- Power supply and data concentrator card at each backplane
- < 20 ps RMS; 700 kHz max. trigger rate</p>

DiRICH/TRB3 DAQ-system:

A.Neiser et al., JINST 8 (2013) C12043 C. Ugur et al., JINST 11 (2016) C01046 J. Michel et al., JINST 12 (2017) C01072 A. Rost et al., JINST 12 (2017) C02047 The TRB3 website: http://trb.gsi.de

DiRICH

EICROC Meeting -- March 6, 2023

Albert Lehmann

hTDiff 9002150 pix44 DCDC

Entries

DCC

- Observation: measured time resolution is much worse than the nominal <20 ps RMS
 - TRB3 was first powered with DCDC voltage converters
 - Double peak structures seen in both Time and ToT
 - Delay lines inside FPGA highly susceptible to voltage variations
 → leads to worse time resolution and double peaks
 - TRB3 is now powered by LDOs (Low Dropout regulators)
 - LDOs are less noisy and deliver more stable output voltages to FPGA
 - Much better time resolution and no double structures seen anymore

EICROC Meeting -- March 6, 2023

Problem with DiRICH inside B-field

- Schematic shows input stage of one DiRICH input channel
 - Amplification (x25) drops by factor 5 6 inside 3 Tesla MRI magnet
 - Coil (TX1, L77, L74) ferrites saturate at above 0.3 0.7 T
- Solution: exchange TX1 coil with 2 x 10 nF capacitors to keep the electric isolation between sensor channels and DAQ
 - TX1 bridged and L77 without ferrite core shows nearly no signal drop
 - total loss of only ~11% in 3 Tesla B-field

old configuration

+0T

•3T

80

100 Pulse height (mV)

V1_1_amps

AMPOUT1

pulse height [Threshold]

16000

14000

12000

10000

8000

6000

4000

2000

PMT Quality Control Scans with DiRICH/TRB3

<u>Automated quality control measurements for series</u> production Barrel (and Endcap) DIRC MCP-PMTs

Measure time delay between laser pulse and pixel response
 For easier analysis laser peak shifted to 100 ns for all channels

- <u>Each channel</u>: permanently recording time and time-over-threshold (ToT) information of all hits above a freely selectable threshold
- Record all hits in a certain time window (e.g., -10 to +1 µs) around PiLas trigger (for each pixel)
- xy-scans $(\frac{1}{2} 1 \text{ mm steps})$: information per channel
 - x-, y-position, hit time, ToT, number of hits
 - Time resolution (TTS and RMS) per anode pixel
- Higher level information accessible:
 - Darkcount xy-distributions
 - Charge sharing (and electronic) crosstalk behavior
 - Recoil electron distributions (position and time)
 - Afterpulse distributions \rightarrow TOF of feedback ions
- 3D-info (x, y, t) allows the separation of
 - hits from recoil electrons
 - charge sharing events
 - afterpulse hits

EICROC Meeting -- March 6, 2023

Information from DiRICH/TRB3 Scans

Albert Lehmann

EICROC Meeting -- March 6, 2023

Example Results of xy-Scans with DiRICH/TRB

!! All results obtained with one single xy-scan of ~21 hours (1/2 mm steps; 13689 measured positions) !!

Albert Lehmann

EICROC Meeting -- March 6, 2023

Crosstalk inside Magnetic Field

- Charge sharing crosstalk is clearly affected by B-field
- Pixel position is much better defined inside B-field >0.1 T
 - magnetic field forces electrons between MCP and anode to curl
 - charge cloud is less extended
 - almost no charge sharing left
- Similar studies were done with recoil electrons
 - photo electron bounces back at MCP entrance
 - due to curling in B-field these electrons fall back to the MCP at basically the same position
 - time distribution is unchanged

- Modified backplane significantly reduced the oscillations seen in former MCP-PMTs
- PANDA Barrel DIRC MCP-PMTs will be read out by GSI-designed DiRICH/TRB3 DAQ
- Application of this system for PMT quality control screenings show very good results
 - Allows fast and automated xy-scans for each PMT
 - Access to internal PMT parameters like
 - Time resolution
 - Dark count rate
 - Electronic and charge sharing crosstalk
 - Recoil electron distributions
 - Afterpulse distributions and fractions