
PanDA/Dask Integration

March 3, 2023
NPPS Group Meeting

Paul Nilsson



Introduction

2

• As part of the ATLAS Google Project, a “Dask 
submitter” is being developed for Harvester to 
achieve PanDA/Dask integration

• The goal is to give users possibility to use Dask 
on Google resources via PanDA

• The solution is being tested on GCP resources, 
on which a Kubernetes cluster has been set up

• But what is actually Dask about?



Dask

3

Dask is a flexible open-source Python library for parallel computing. Dask scales Python code from 
multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user 
interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-
learn and NumPy.

Wikipedia

• Dask makes it “easy” to scale common Python libraries (NumPy, pandas, scikit-learn, ..)
• Can be used to parallelize Python code
• Composed of two parts

• Dynamic task scheduling optimized for computation
• “Big Data” collections like parallel arrays, dataframes, and lists

• Scales up to thousands of cores
• Dask can be deployed on anything from laptops to HPCs

• In the PanDA/Dask project, it is deployed on Kubernetes
• For more info, see https://www.dask.org

https://en.wikipedia.org/wiki/Dask_(software)
https://www.dask.org/


P. Nilsson

PanDA/Dask Integration
• In our case, what will the user be able to do?

• A user can [soon] use prun to either create an interactive jupyter session on GCP with a requested number of 
dask workers (and relevant tools) available, or to submit a dask script that will run on the requested 
resources much like a grid job

• Preliminary example (with no input data but using secrets)
• prun --outDS user.username.`uuidgen` --exec dask_script.py --site GOOGLE_DASK --noBuild –

useSecrets (creates a task in PanDA)

• Assuming existing secrets dictionary (user name + password) and a user job script (currently not executed –
only testing interactive mode at the moment) 

• prun changes for dask job submission are pending users - dask cluster specifics are currently hardcoded but 
can easily be added to prun when actually needed

• A single job is created from the task which is picked up by Harvester, and handled by dask submitter 
which in turn prepares a session / runs the code on GCP

4



Setup

5

• Kubernetes cluster
• Private cluster setup on GCP (isolated from the internet, except for authorized networks)
• Test pool with machine type e2-medium, ~minimal configuration (few nodes, to be 

increased when it makes sense)
• Shared file system (Filestore) added to nodes

• PanDA queue
• A new PanDA queue, GOOGLE_DASK, was created, based on GOOGLE100 queue

• Dev version of Harvester
• Harvester ID CERN_central_dask
• Running on VM (aipanda003@CERN)
• Harvester sets up single-user dask session on cluster when a job is created

• I.e. one session per job, nothing running when there are no jobs; of course, multiple 
users can run at the same time



Workflow Overview

6

• Harvester fetches job from PanDA 
server

• Job is handed over to Dask 
submitter which starts multiple pods 
(pilot, dask scheduler and workers, 
and optionally jupyterlab)

• Dask monitor awaits startup of pilot 
and dask workers, keeps track of 
pod statuses [in testing]

• Pilot fetches any input and 
communicates with server

• A shared file system is used for
proxy/certs and work directories (for 
pilot and job definition)

• Dask sweeper will be used for
cleanup [not fully implemented yet]

Cleanup
Pod

JupyterLab 
Pod



7

• Normally – in Harvester – pods would be started 
from a certain “submitter”, while a corresponding 
“monitor” would wait for all pods to start

• In our case, some pods and services must be
started in correct order, before some other pods 
can be started

• Dask scheduler (and optionally Jupyterlab in 
interactive sessions) pod starts first

• When running, the corresponding IP number is 
extracted and added to the job definition (which is 
then copied to the remote shared file system)

• Pilot and dask worker pods are deployed next
• Monitor will wait for pilot and dask workers to start,

and pods to finish
• Can also terminate pods when out of time
• To be decided: when to issue time-out ..

Dask submitter and monitor

7

Dask submitter and 
monitor workflow as
of March 2023



8

• Dask submitter uses the following images

• Images are currently built on aiatlas025/034@CERN (ATLAS software development machines)
• All images uploaded to Google Artefact repository for fast access and avoids docker hub

• Note: still using docker to build images, but planning on switching to podman asap (an earlier attempt failed since 
there was a problem installing it) which is allegedly a full alternative to docker (worth checking out)

Images

7

Image name Description Size (MB)

dask_scheduler Dask scheduler image based on continuumio/miniconda3:4.8.2 (to be updated), 
https://github.com/PalNilsson/dask-scheduler

424

dask_worker Dask worker image based on continuumio/miniconda3:4.8.2 (to be updated),
https://github.com/PalNilsson/dask-worker

414

jupyterlab JupyterLab image based on datascience-notebook which comes with dask support (to be 
updated), https://hub.docker.com/r/jupyter/datascience-notebook/tags (several options to choose 
between at https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html)

1400

pilot Pilot image based on rucio-clients (1.30.5) and pilot3 (latest dev),(to be optimized) 
https://github.com/PalNilsson/pilot-image

267

remote_cleanup Remote cleanup image, https://github.com/PalNilsson/remote-cleanup 0.8

https://podman.io/
https://github.com/PalNilsson/dask-scheduler
https://github.com/PalNilsson/dask-worker
https://hub.docker.com/r/jupyter/datascience-notebook/tags
https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
https://github.com/PalNilsson/pilot-image
https://github.com/PalNilsson/remote-cleanup


P. Nilsson

Interactive Example

9

• Interactive job created with 
prun (command on slide 4)

• When dask scheduler and 
jupyterlab IPs are known, pilot 
sends them to PanDA server

• PanDA monitor gets the info
from DB and displays info

• User password given to prun
is used to login to jupyter
session

• Will be obscured from any logs
• User starts python 3

“PanDA Monitor”

Interactive Jupyter session 

from distributed import Client
client = Client(‘tcp://10.8.2.0:8888’)

NOT 
YET



P. Nilsson

Interactive Example

10

• Import and connect to 
dask scheduler

• Cut and pasted from job page
• Warnings are currently ignored

• Packages will be updated

• Run your code ..



P. Nilsson

Status and Immediate Plans
• Basic functionality mostly implemented and mostly works

• Pilot pod added this week - currently in testing
• Needed for communicating IPs and sending job status to server (file transfers not attempted yet)
• Pod starts nicely, but needs proxy to communicate to server (proxy not copied yet; now debugging ..)

• Sort out remaining technical issues and questions (incl. how to end interactive session 
fairly and properly)

• Finish implementing dask sweeper
• Currently minimal implementation (or Harvester complains), so cleanup is occasionally manual ..

• Time line for “basic functionality implemented and working”: April 2023

• Update images
• Not needed for current tests, but probably good to do anyway

11


