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Introduction

Experimental hall at T10 beamline

CERN PS, Hall Tio
LAPPD installed downstream of dRICH prototype

CERN testbeam Oct. 2022



Introduction

Measurement setup

IHustrative Schematic:  NOT TO SCALE
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Introduction

Trigger SiPM and reference MCP

Hamamatsu MPPC SiPM (S13360-60250°5)
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Introduction

LAPPD readout

Custom made preamplificrs by INFN, Genova
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Introduction

LAPPD bias voltages
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Introduction

DAQ system
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WEINER VME crate: |
CAEN V1718 controller board
CAEN V1742 Digitizer board with 32 readout channels
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*  Introduction

Measured LAPPD signals w.r.t. Hamamatsu MCP

@ LAPPD risetime (20-80%) was about 0.75 ns,

@ Hamamatsu MCP had (intrinsic 0.16 ns),

@ V1742 digitizer has BW=0.5 GHz —0.45 ns is its infrinsic
limit on risetime (20-80%).

@ LAPPD 1 inch pad has large capacitance 5 pF,
assuming 509 load we expected

—Homamafsu MCP




LAPPD signal risetime

@ 15% variations of risetime channel-to-channel,

@ some correlation with fiming resolution observed,

@ components on PCB are two TCM4-452X+
tfransformers BW=4.5 GHz,

@ large risetime in nearby pads: B6+C6 and F3+G3,

@ parasitic capacitance in some pads?

@ SPE elect. resolution: 750ps/(250mV/1.2mV)~4 ps.
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DRS4 timing calibrations

@ fiming corrections are significant: 52 ps broadening,
@ CAEN corrections give best resolution of ,

@ Bologna corrections lead to broadening of 41 ps,

@ Bologna corrections give 31 ps shorter delay,
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CAEN vs. Bologna calibrations

@ CAEN provides small corrections +1-+3 ps per cell,
@ Bologna method gives fixed pattern correction:
—50 ps per even and 450 ps per odd cells,
@ selected events with delay of exactly 31 cells (odd),
@ studied the timing as a function of MCP channel cell,
@ CAEN correction has less cell-to-cell oscillations, but
has broad offsets of about 40 ps.
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LAPPD and MCP PH-corrections on time

@ time difference depends on signal Pulse Height,

@ in LAPPD drift is +0.05 ps/mV,

@ in Haomamatsu MCP drift is -0.1 ps/mV,

@ after correction the residual PH-dependence is <5 ps.
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Final SPE LAPPD timing resolution

@ SPE timing resolution of 80 ps (RMS) was observed,
@ the resolution is a + b/v/'V function of LAPPD PH,
@ constant term of 40 ps agrees with no filter o,

@ Npe termis approximately =40 ps/\/Np.e..
@ no significant dependence on Hamamatsu MCP PH.
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*  Introduction *
Bias voltage dependence

@ increasing Photocatode voltage from 50 V to 100 V
leads to 11% improvement,

@ increasing Anode voltage from 200 V to 300 V leads
to 16% improvement,

@ dependence on LAPPD gain is under study.
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LAPPD SPE charge calibrations

@ LED SPE calibrations performed at CERN agree with
beam-on spectra in Cherenkov ring pads,

@ LAPPD N.124 at 800/900 V should have gain of 4x 10°,
expected SPE=1.28 pC (includes x2),

@ At CERN observed SPE= (1.5 pC for selected
hits), but some background could be sfill present.
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g Conclusion *
Summary

@ tested 20 um pore LAPPD N.124 capacitively coupled
to the Incom readout board with 1 inch pads,

@ observed SPE timing RMS of about 80 ps,
@ it can be described as: 40 ps + 40 ps/\/Np.e..

@ increasing PhotoCathode and Anode bias voltage
improves resolution by 11% and 16%,

@ LAPPD showed risetime of 750 ps (expected 260 ps),
@ |large cross-talk between pads was observed.




* Conclusion *
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* Backup slides

Backup slides




I\/IuITlpIe hit cross talk on LAPPD

@ in single hit measurements (laser) signals are clean,

@ in multiple hit events (Cherenkov ring + beam spof)
strong cross talk was observed,

@ 30-90% of events have at least one EMI distortion,

@ EMI distortion on signal affects rising edge (timing),

@ in aoffected events 17/31 channels are distorted.
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* Backup slides *
SPE timing resolution

@ Geant4 gives ideal (light only) estimate: o ~ 8 ps,

@ signals in MCP allow (TTS=0) to obtain:
450 ps/(600 mV/1.5 mV)=1 ps,

@ signals in LAPPD allow (TTS=0) to obtain:
750 ps/(200 mV/1.5 mV)=6 ps,

@ measured resolution is 10 times larger, but agrees with
TTS(PC=50 V)=90 ps measured by Vincenzo.
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* Backup slides *
Cherenkov ring

@ Cherenkov ring was observed,
@ normalization of average is affected by cross-talk,

@ beam spot was suppressed by a factor of 10
(grease+black tape on the window),

@ 32 channels are barely sufficient to cover entire ring
(25 mm pads, ring radius 60 mm).

Geant4 (p.e) CERNPSTIOht 8 GeV Q[pC]

‘Hit Y [mm]
o




LAPPD SPE charge CO|IbI’OTIOﬂS

@ LAPPD N.87 at 875/875 V had gain of 3.3x 10°,
SPE=0.53 pC in INCOM datasheet; missing a factor of
2 from V1742 input voltage divider, including it we
measured 1.2 pC with laser pulser,

@ LAPPD N.124 at 800/900 V should have gain of 4x 10°,
expected SPE=1.28 pC (includes x2),

@ At CERN observed SPE= , but some background
could be sfill present,

LAPPD N 87 875/875V 5 LAPPD N 124 800/900 \%
a—t T — Cpp_peak_qdc_12 = % T o ‘ SO peak 0
[ RMS 05757 ol chl g:nz ogigg
10 X2/ ndf 73.91/29 E - 7
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LAPPD cross shadow

LAPPD.87 with Na,KSb photocathode

@ LAPPD pads are 4=365nm
large: 25x25 -100
mm2,
@ MCP -50
cross-shaped
support shadow 0
affects 4 central
pads, 50
@ but their
geometrical 100
efficiency remains 100 50 0 -50 -100

> 50%.




LAPPD Quantum EfﬂClency

@ in wavelength LAPPD. 12 with Na,KSb photocathode
range 180-400 nm 0%
QE of LAPPD is 35%
> 30%, 30%
. . 25%
@ numerical S
convolution & 15y
dN/dX(\) and 10%
QE(\): 33.6 5%
p.e./mm. 0%

160 260 360 460 560 660 760
@ analytic estimate Wavelength [nm]

of Cherenkov p.e.

yield assuming

average QE=30%:

160nm  560nm

NW:O.O256*{ ] ] }*o 30 =34 25
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Backup slides

60 mm backward, chromatic dispersion - ring

@ Cherenkov ring is wide even without chromatic
dispersion,

@ chromatic dispersion adds more width to the ring.

no dispersion

100 2 100 2
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-100 o -100 o

-100 -80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 20 0 20 40 60 80 100
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Backup slides

60 mm backward, chromatic dispersion - radius

@ Cherenkov ring is 8 mm wide even without chromatic
dispersion,

@ the width is related to emission point uncertainty: it
varies from 4.3 mm to 13.8 mm (from lens face - first
4.3 mm is blind).

@ chromatic dispersion doubles the width of the ring.

no dispersion
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Backup slides

60 mm backward, chromatic dispersion - time

@ without chromatic dispersion total width of
Cherenkov photon timing distribution is 17 ps,

@ chromatic dispersion delay fraction of photons
increasing the width by 5 times.

Nno dispersion
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Backup slides

Lens.17-334 AF 50 mm backward BS 1 cm? - ring

@ lens #67-265: (3 p.e./pad),
@ lens #17-334: (4 p.e./pad),
°

lens #67-265 at 60 mm lens #17-334 at 50 mm

100 05 100

80 . 0.4 18

60 0.4 1.6
40 0.3 1.4
g20 03 1.2
o 0.2 1
£20 0.2 0.8
-40 01 0.6
-60 01 0.4
-80 0.0 0.2
10900 80 60 40 20 0 20 40 60 80 100 ° 710960 80 60 40 20 0 20 40 60 80 100 °

Hit X [mm] Hit X [mm]




Backup slides

Lens.17-334 AF 50 mm backward BS 1T cm? - radius

@ lens #67-265: gives smoothed radius distribution,
@ lens #17-334: gives Gaussian-like radius distribution,

lens #67-265 at 60 mm lens #17-334 at 50 mm

O L B B e
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Backup slides

Lens.17-334 AF 50 mm backward BS 1 cm? - time

@ lens #67-265, D 25 mm, EFL 20 mm; CT 14 mm:timing
RMS of 15 ps,
@ lens #17-334, D 50 mm, EFL 50 mm; CT 19.2 mm

*)
Iens #67 265 at 60 mm Iens #17 334 at 50 mm
Tx2 7 ndf 139.6 / 86 Err Tx2 7/ ndf 449.3/51
soob- Constant  83.38 + 1.81 700 Constant ~ 243#3.5
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Backup slides

Setup for testbeam
@ beam - protons
5-12 GeV/c,

@ aspheric lens
radiator,

© LAPPD with 32
ch readout by
V1742 digitizer.

direct

M. Osipenko INFN 0 April 20




LAPPD mounting offset

@ if beam impacts on LAPPD center it produces a signal
in 4 pads reducing the spacial separation between
beam and Cherenkov ring,

@ offsetting LAPPD by 12.56 mmin X and Y the

cen’rered LAPPD LAPPD at (-12.5,-12.5) mm
100 T 3.5 100
80 80 1.8
3
60 60 1.6
40 2.5 40 14
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£ £
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60 -60 0.4
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-80 -80 0.2
-100 0 -100 0
-100 -80 -60 -40 -20 20 40 60 80 100 -100 -80 -60 -40 -20

0
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* Backup slides *
31 mm Direct vs. backward reflection - ring

@ direct configuration gives broad ring(27 p.e./pad),

@ backward reflection gives narrow and broad rings(33
p.e./pad),

@ why?

@ beam spot is larger for backward reflection.

@

direct

=
o
S

backward reflection

N A O
o ©o o o

Hit Y [mm]

-100
-100 -80 -60 -40

0
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* Backup slides *
31 mm Direct vs. backward reflection - radius

@ direct configuration gives broad ring,
@ backward reflection gives narrow and broad rings,

@ why?
@ beam spot is larger for backward reflection.
o
direct
wooE T T T T T backward reflection
800i j 2500 (= o
: 2000;
$00 ] F
400 4 2
] 1000 [
200 ; E
— 5005
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* Backup slides *
31 mm Direct vs. backward reflection - fime

@ direct configuration gives photon timing RMS of 13 ps,
and 0.07 ns offset from proton impact,

900
800
700
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2500

Q
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200

100

@ backward reflection gives photon

and 0.31 ns offset from proton impact,
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Backup slides

60 mm Direct vs. backward reflection - ring

@ direct configuration gives broad ring (11 p.e./pad),
@ backward reflection gives narrow ring (13 p.e./pad),
@ why?

@ beam spot is larger for backward reflection.

backward reflection

100
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80—
60 1.2
40F
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T2 0.6
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* Backup slides *
60 mm Direct vs. backward reflection - radius

@ direct configuration gives broad ring,
@ backward reflection gives narrow and broad rings,

@ why?
@ beam spot is larger for backward reflection.
°

direct backward reflection

L L. L

40 60
Hit radius [mm]




* Backup slides *
60 mm Direct vs. backward reflection - time

@ direct configuration gives photon timing RMS of 24 ps,

@ backward reflection gives photon fiming RMS of 12 ps,

and 0.07 ns offset from proton impact,

and 0.31 ns offset from proton impact,

L
550 600
Hit time [ps]
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* Backup slides *
Step 1 conclusions

@ too many photo-electron/pad: 27 for 31 mm and 13
for 60 mm (need SPE timing),

@ spacial separation between beam spot (170 p.e.)
and Cherenkov ring photons is just 1 pad (31 mm) or 2
pads (60 mm) - cross talk?,

@ cross talk in the next (10%=17 p.e.?) and next-to-next
(1%=2 p.e.?) pads? Perhaps larger than SPE?

@ > 60 mm distance is needed,

@ fiming distribution is foo broad.




Acrylic filter

AF 60 mm Direct vs. backward reflection - ring

@ direct configuration gives broad ring (2 p.e./pad),
@ backward reflection gives narrow ring (3 p.e./pad),
@ why?

@ beam spot is larger for backward reflection.

backward reflection

100 02 100 0.5
80 01 80 0.4
60 01 60 0.4
s 01 40 0.3

gzoé 01 g2o 0.3
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T2k 00 £20 0.2
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-100, 0 -
-100 -80 -60 -40 -20 O 20 10—0100 -80 60 -40 20 0O 20 40 60 80 100
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Acrylic filter

AF 60 mm Direct vs. backward reflection - radius

@ direct configuration gives broad ring,
@ backward reflection gives narrow and broad rings,

@ why?

@ beam spot is larger for backward reflection.

°

direct backward reflection
(1] L L 200 [T T e ey
600@ * 600; é
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Acrylic filter

AF 60 mm Direct vs. backward reflection - time

@ direct configuration gives photon timing RMS of
10-13 ps, and 0.07 ns offset from proton impact,

@ backward reflection gives photon
,and 0.31 ns offset from proton impact,

o
direct backward reflection
e

F X2/ ndf  3.636e+04 /56 FroT T T T T T TTT e gt 3.7826+04 143
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* Acrylic filter *
Step 2 conclusions

@ number photo-electrons/pad is reduced: 3 for 60 mm
(but need SPE timing),

@ spacial separation between beam spot (170 p.e.)
and Cherenkov ring photons is just 1 pad (31 mm) or 2
pads (60 mm) - cross talk?,

@ cross talk in the next (10%=17 p.e.?) and next-to-next
(1%=2 p.e.?) pads? Perhaps larger than SPE?

@ > 60 mm distance is needed,

@ timing distribution for backward reflection
configuration is OK,




Beam spot size

AF 60 mm backward reflection BS 1 cm? - ring
@ beam spot 0 (3 p.e./pad),
@ beam spot 1 cm? (3 p.e./pad),

@ LAPPD beam spot is larger for BS 1 cm?, entering in
nearby pads (5 p.e./pad).

beam spot 0 beam spot 1 cm?

_10—0100 -80 60 -40 20 0O 20 40 60 80 100 0
Hit X [mm]




Beam spot size  *

AF 60 mm backward reflection BS 1 cm? - radius

@ beam spot O gives rectangular radius distribution,
@ beam spot 1 cm? gives smoothed radius distribution,

beam spot 0 beam spot 1 cm?
Y B B I I LI I B 5005“‘ H“H“H“H‘j
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E 400 i
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Beam spot size

AF 60 mm backward reflection BS 1 cm? - time

@ beam spot 0 ,
@ beam spot 1 cm? timing RMS of 14-15 ps,
@ beam spot 1 cm? is too large.

2

beam spot 0 beam spot 1 cm
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FroTrmrrrrrmm e r T T 2 Indf 3.782e+04 1 43 [ X/ e 139.6/86

600 - Constant ~ 2985:0.4 600 Constant  83.38+ 1.81

F Mean 612.7+0.0 r Mean 619.5+0.3

F Sigma 5.381% 0.007 [ Sigma  15.24 +0.20
500 1 500 |
400 4 gooF 3
o [ 1 400F ]
:F i ¢ f 1
{B00 — - oo -
200 Rt E
100 - 100~ =
0: il L ) ITRTTTIN SERTINIIN TS w_LAlw: E L L ol LA‘L ke ]

100 200 300 400 _ 500 600 700 0 200 800 1000

400 600
Hit time [ps] Hit time [ps]




* Beam spot size  *
Step 3 conclusions

(*]
(*]

o

T10 beam spot is 15x10 mm?,

but the trigger MCP we plan to rent has active area
10x10 mm?,

simulated timing resolution increases from 5 to 15 ps,
too large for our purpose,

reducing active beam spot to 5x5 mm? allows to
reach 8 ps (efficiency 17%),

in backward reflection configuration attaching

allows to suppress beam induced signal (reducing
cross-talk issue).




Number of Cherenkov photons

@ assume proton beam with P=12 GeV/c, (3,=0.9969589
and ¢ = 48.4° in fused silica (n=1.51 at 250 nm),

@ the number of Cherenkov photons (in range of LAPPD
photocathode sensitivity) produced in 1 mm of
quartz:

B 1 1 B photons
Ny = 0.0256 « { 160nm 560nm} =4

@ thus in 5 mm thick LAPPD window we produce
570 photons,

@ in 14 mm thick aspheric lens we produce
1600 photons,

@ assuming 30% mean QE of Na,KSb photocathode we
estimate: 170 p.e. fromm LAPPD window and 480 p.e.
from aspheric lens,

@ Geant4 simulation gives 174 p.e. from LAPPD window
and 359 p.e. from aspheric lens.
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