LAPPD beam test results CERN testbeam Oct. 2022

Deb Sankar Bhattacharya¹, Chandradoy Chatterjee¹, Silvia Dalla Torre¹, Mauro Gregori¹, Alexander Kiselev², Saverio Minutoli³, Mikhail Osipenko³

¹INFN Trieste ²BNL ³INFN Genova

Expected results

- estimated 14 ps SPE resolution (TTS not included),
- based on signal risetime and S/N-ratio,
- optimized setup to have all other timing uncertainties <20%, which corresponds to 9.3 ps.

INFN

05/04/2022

Experimental hall at T10 beamline

CERN PS, Hall Tio LAPPD installed downstream of dRICH prototype

Measurement setup

Introduction

Trigger SiPM and reference MCP

Hamamatsu MPPC SiPM (S13360-6025CS)

Beam Entry SIPM . Scintillating fibers Kuraray 3HF(1500)MJ diameter = 500 µm $array = 10 \times 10$ $SiPM = 6 \times 6 \text{ mm}^2$

gain = 10 mV/p.e risetime = 20 ns falltime = 100 ns

The SiPM and the Lens mount

SiPM onboard amplifier

Hamamatsu MCP-PMT (R3809U-50)

Photocathode

3.2 mm thick Window = quartz, diameter = 11 mm Spectral response: 160 to 850 nm; peaks at 430 nm

Typical Characteristics

Gain = 2 × 105; Dark current = 10 nA Rise time = 150 ps Transit time = 550 ps Transit time spread = 25 ps (RMS=10 ps)

Introduction

onclusion

ackup slides

Acrylic

LAPPD readout

Can you spot an important difference between the two LAPPD tiles?

Custom made preamplifiers by INFN, Genova

Gain = 10 (20 dB), BW = 2 GHz, output = inverting

Present version comprises 8 input/output per unit

LAPPD bias voltages

Introduction

DAQ system

INFN

V1742 Board:

- > 4 DRS chips
- > 5 GS/s -> 200 ps
- > 32 Analog channels > 2 fast triggers (1 global trigger)
- > each channel has 1024 SCA (Cells)

20 April 2023 CERN testbeam Oct. 2022

Measured LAPPD signals w.r.t. Hamamatsu MCP

- LAPPD risetime (20-80%) was about 0.75 ns,
- Hamamatsu MCP had 0.4 ns (intrinsic 0.16 ns),
- V1742 digitizer has BW=0.5 GHz →0.45 ns is its intrinsic limit on risetime (20-80%),
- LAPPD 1 inch pad has large capacitance 5 pF, assuming 50Ω load we expected 0.26 ns.

 Introduction
 Conclusion
 Backup slides
 Acrylic filter
 Beam spot size

LAPPD signal risetime

- 15% variations of risetime channel-to-channel,
- some correlation with timing resolution observed,
- components on PCB are two TCM4-452X+ transformers BW=4.5 GHz,
- large risetime in nearby pads: B6+C6 and F3+G3,
- parasitic capacitance in some pads?
- SPE elect. resolution: 750ps/(250mV/1.2mV)≃4 ps.

 Introduction
 Conclusion
 Backup slides
 Acrylic filter
 Beam spot size

DRS4 timing calibrations

- timing corrections are significant: 52 ps broadening,
- CAEN corrections give best resolution of 39 ps,
- Bologna corrections lead to broadening of 41 ps,
- Bologna corrections give 31 ps shorter delay,

$$T_{j}^{ch1} - T_{k}^{ch7} = (j-k) \times 200ps + \sum_{i=1}^{i \le j} (\Delta t_{i}^{ch1} - 200ps) - \sum_{i=1}^{i \le k} (\Delta t_{i}^{ch7} - 200ps)$$

CAEN vs. Bologna calibrations

- CAEN provides small corrections $\pm 1 \div 3$ ps per cell,
- Bologna method gives fixed pattern correction:
 -50 ps per even and +50 ps per odd cells,
- selected events with delay of exactly 31 cells (odd),
- studied the timing as a function of MCP channel cell,
- CAEN correction has less cell-to-cell oscillations, but has broad offsets of about 40 ps.

 Introduction
 Conclusion
 Backup slides
 Acrylic filter
 Beam spot size

LAPPD and MCP PH-corrections on time

- time difference depends on signal Pulse Height,
- in LAPPD drift is +0.05 ps/mV,
- in Hamamatsu MCP drift is -0.1 ps/mV,
- after correction the residual PH-dependence is <5 ps.

Final SPE LAPPD timing resolution

- SPE timing resolution of 80 ps (RMS) was observed,
- the resolution is $a + b/\sqrt{V}$ function of LAPPD PH,
- ullet constant term of 40 ps agrees with no filter σ ,
- $N_{p.e.}$ term is approximately = 40 $ps/\sqrt{N_{p.e.}}$,
- no significant dependence on Hamamatsu MCP PH.

Bias voltage dependence

- increasing Photocatode voltage from 50 V to 100 V leads to 11% improvement,
- increasing Anode voltage from 200 V to 300 V leads to 16% improvement,
- dependence on LAPPD gain is under study.

Introduction Backup slides Beam spot size

LAPPD SPE charge calibrations

- LED SPE calibrations performed at CERN agree with beam-on spectra in Cherenkov ring pads,
- LAPPD N.124 at 800/900 V should have gain of 4×10^6 , expected SPE=1.28 pC (includes \times 2),
- At CERN observed SPE=0.9 pC (1.5 pC for selected hits), but some background could be still present.

Collected SPE charge

Summary

- tested 20 μ m pore LAPPD N.124 capacitively coupled to the Incom readout board with 1 inch pads,
- observed SPE timing RMS of about 80 ps,
- it can be described as: $40 ps + 40 ps / \sqrt{N_{p.e.}}$,
- increasing PhotoCathode and Anode bias voltage improves resolution by 11% and 16%,
- LAPPD showed risetime of 750 ps (expected 260 ps),
- large cross-talk between pads was observed.

M. Osipenko

References

- M. Amarian et al., "The CLAS forward electromagnetic calorimeter", Nucl. Instr. and Meth. A460, 239 (2001).
- M. Guillo, "EC Time Calibration Procedure for photon runs in CLAS", CLAS-Note-2001-014, 2001.
- M. Osipenko, "Geometrical alignment of CLAS DCs using tracks with constrained vertex", CLAS-Note-2019-001, 2019.

Backup slides

Multiple hit cross talk on LAPPD

- in single hit measurements (laser) signals are clean,
- in multiple hit events (Cherenkov ring + beam spot) strong cross talk was observed,
- 30-90% of events have at least one EMI distortion,
- EMI distortion on signal affects rising edge (timing),
- in affected events 17/31 channels are distorted.

20 M. Osipenko

SPE timing resolution

- Geant4 gives ideal (light only) estimate: $\sigma \sim$ 8 ps,
- signals in MCP allow (TTS=0) to obtain: 450 ps/(600 mV/1.5 mV)=1 ps,
- signals in LAPPD allow (TTS=0) to obtain: 750 ps/(200 mV/1.5 mV)=6 ps,
- measured resolution is 10 times larger, but agrees with TTS(PC=50 V)=90 ps measured by Vincenzo.

Cherenkov ring

- Cherenkov ring was observed,
- normalization of average is affected by cross-talk,
- beam spot was suppressed by a factor of 10 (grease+black tape on the window),
- 32 channels are barely sufficient to cover entire ring (25 mm pads, ring radius 60 mm).

LAPPD SPE charge calibrations

- LAPPD N.87 at 875/875 V had gain of 3.3×10⁶, SPE=0.53 pC in INCOM datasheet; missing a factor of 2 from V1742 input voltage divider, including it we measured 1.2 pC with laser pulser,
- LAPPD N.124 at 800/900 V should have gain of 4×10^6 , expected SPE=1.28 pC (includes $\times 2$),
- At CERN observed SPE=0.7 pC, but some background could be still present.

LAPPD N.87 875/875 V

LAPPD N.124 800/900 V

LAPPD cross shadow

- LAPPD pads are large: 25×25 mm²,
- MCP cross-shaped support shadow affects 4 central pads,
- but their geometrical efficiency remains > 50%.

LAPPD.87 with Na₂KSb photocathode

LAPPD Quantum Efficiency

- in wavelength range 180-400 nm QE of LAPPD is > 30%,
- numerical convolution dN/dλ(λ) and QE(λ): 33.6 p.e./mm.
- analytic estimate of Cherenkov p.e. yield assuming average QE=30%:

$$N_{\gamma} = 0.0256* \left\{ \frac{1}{160nm} - \frac{1}{560nm} \right\} *0.30 = 34 \frac{p.e.}{mm},$$

60 mm backward, chromatic dispersion - ring

- Cherenkov ring is wide even without chromatic dispersion,
- chromatic dispersion adds more width to the ring.

60 mm backward, chromatic dispersion - radius

- Cherenkov ring is 8 mm wide even without chromatic dispersion,
- the width is related to emission point uncertainty: it varies from 4.3 mm to 13.8 mm (from lens face - first 4.3 mm is blind).
- chromatic dispersion doubles the width of the ring.

60 mm backward, chromatic dispersion - time

- without chromatic dispersion total width of Cherenkov photon timing distribution is 17 ps,
- chromatic dispersion delay fraction of photons increasing the width by 5 times.

Lens. 17-334 AF 50 mm backward BS 1 cm² - ring

- lens #67-265: (3 p.e./pad),
- lens #17-334: (4 p.e./pad),
- lens #17-334 gives better separation of Cherenkov photons from primary beam: +3 pads instead of +2 pads

M. Osipenko

Lens. 17-334 AF 50 mm backward BS 1 cm² - radius

- lens #67-265: gives smoothed radius distribution,
- lens #17-334: gives Gaussian-like radius distribution,

Lens. 17-334 AF 50 mm backward BS 1 cm² - time

- lens #67-265, D 25 mm, EFL 20 mm; CT 14 mm:timing RMS of 15 ps,
- lens #17-334, D 50 mm, EFL 50 mm; CT 19.2 mm timing RMS of 10 ps,
- even with 1 cm² beam spot lens #17-334 satisfy requirements (< 22% broadening)

Setup for testbeam

- beam protons 5-12 GeV/c,
- aspheric lens radiator,
- LAPPD with 32 ch readout by V1742 digitizer.

direct

LAPPD mounting offset

- if beam impacts on LAPPD center it produces a signal in 4 pads reducing the spacial separation between beam and Cherenkov ring,
- offsetting LAPPD by 12.5 mm in X and Y the beam spot signal is focusing on just one pad,

31 mm Direct vs. backward reflection - ring

- direct configuration gives broad ring(27 p.e./pad),
- backward reflection gives narrow and broad rings(33 p.e./pad),
- why?
- beam spot is larger for backward reflection.
- direct gives better spacial separations from beam hit.

34 M. C

31 mm Direct vs. backward reflection - radius

- direct configuration gives broad ring,
- backward reflection gives narrow and broad rings,
- why?
- beam spot is larger for backward reflection.
- direct gives better spacial separations from beam hit.

31 mm Direct vs. backward reflection - time

- direct configuration gives photon timing RMS of 13 ps, and 0.07 ns offset from proton impact,
- backward reflection gives photon timing RMS of 9 ps, and 0.31 ns offset from proton impact,
- backward reflection gives better time separations from beam hit.

direct

backward reflection

troduction Conclusion Backup slides Acrylic filter Beam spot size

60 mm Direct vs. backward reflection - ring

- direct configuration gives broad ring (11 p.e./pad),
- backward reflection gives narrow ring (13 p.e./pad),
- why?
- beam spot is larger for backward reflection.
- direct gives better spacial separations from beam hit.

troduction Conclusion Backup slides Acrylic filter Beam spot size

60 mm Direct vs. backward reflection - radius

- direct configuration gives broad ring,
- backward reflection gives narrow and broad rings,
- why?
- beam spot is larger for backward reflection.
- direct gives better spacial separations from beam hit.

troduction Conclusion Backup slides Acrylic filter Beam spot size

60 mm Direct vs. backward reflection - time

- direct configuration gives photon timing RMS of 24 ps, and 0.07 ns offset from proton impact,
- backward reflection gives photon timing RMS of 12 ps, and 0.31 ns offset from proton impact,
- backward reflection gives better time separations from beam hit.

onclusion Backup slides Acrylic filter Beam spot size

Step 1 conclusions

- too many photo-electron/pad: 27 for 31 mm and 13 for 60 mm (need SPE timing),
- spacial separation between beam spot (170 p.e.) and Cherenkov ring photons is just 1 pad (31 mm) or 2 pads (60 mm) - cross talk?,
- cross talk in the next (10%=17 p.e.?) and next-to-next (1%=2 p.e.?) pads? Perhaps larger than SPE?
- > 60 mm distance is needed,
- timing distribution is too broad.

Introduction Conclusion Backup slides Acrylic filter Beam spot size

AF 60 mm Direct vs. backward reflection - ring

- direct configuration gives broad ring (2 p.e./pad),
- backward reflection gives narrow ring (3 p.e./pad),
- why?
- beam spot is larger for backward reflection.
- direct gives better spacial separations from beam hit.

41 M. O:

Acrylic filter

AF 60 mm Direct vs. backward reflection - radius

- direct configuration gives broad ring,
- backward reflection gives narrow and broad rings,
- whv?
- beam spot is larger for backward reflection.
- direct gives better spacial separations from beam hit.

60 70 Introduction Conclusion Backup slides Acrylic filter Beam spot size

AF 60 mm Direct vs. backward reflection - time

- direct configuration gives photon timing RMS of 10-13 ps, and 0.07 ns offset from proton impact,
- backward reflection gives photon timing RMS of 3.5-5 ps, and 0.31 ns offset from proton impact,
- backward reflection gives better time separations from beam hit.

backward reflection

tion Conclusion Backup slides **Acrylic filter** Beam spot size

Step 2 conclusions

- number photo-electrons/pad is reduced: 3 for 60 mm (but need SPE timing),
- spacial separation between beam spot (170 p.e.) and Cherenkov ring photons is just 1 pad (31 mm) or 2 pads (60 mm) - cross talk?,
- cross talk in the next (10%=17 p.e.?) and next-to-next (1%=2 p.e.?) pads? Perhaps larger than SPE?
- > 60 mm distance is needed,
- timing distribution for backward reflection configuration is OK.

ntroduction Conclusion Backup slides Acrylic filter **Beam spot size**

AF 60 mm backward reflection BS 1 cm² - ring

- beam spot 0 (3 p.e./pad),
- beam spot 1 cm² (3 p.e./pad),
- LAPPD beam spot is larger for BS 1 cm², entering in nearby pads (5 p.e./pad).

Introduction Conclusion Backup slides Acrylic filter Beam spot size

AF 60 mm backward reflection BS 1 cm² - radius

- beam spot 0 gives rectangular radius distribution,
- beam spot 1 cm² gives smoothed radius distribution,

Beam spot size

139.6 / 86

1000

AF 60 mm backward reflection BS 1 cm² - time

- beam spot 0 timing RMS of 3.5-5 ps,
- beam spot 1 cm² timing RMS of 14-15 ps,
- beam spot 1 cm² is too large.

ntroduction Conclusion Backup slides Acrylic filter **Beam spot size**

Step 3 conclusions

- 110 beam spot is 15x10 mm²,
- but the trigger MCP we plan to rent has active area 10x10 mm²,
- simulated timing resolution increases from 5 to 15 ps, too large for our purpose,
- reducing active beam spot to 5x5 mm² allows to reach 8 ps (efficiency 17%),
- we must put beam profile monitor 5x5 mm² in front of trigger MCP,
- in backward reflection configuration attaching black adhesive tape on the central pad window section allows to suppress beam induced signal (reducing cross-talk issue).

roduction Conclusion Backup slides Acrylic filter Beam spot size

Number of Cherenkov photons

- assume proton beam with P=12 GeV/c, β_p =0.9969589 and θ_C = 48.4° in fused silica (n=1.51 at 250 nm),
- the number of Cherenkov photons (in range of LAPPD photocathode sensitivity) produced in 1 mm of quartz:

$$N_{\gamma} = 0.0256 * \left\{ \frac{1}{160nm} - \frac{1}{560nm} \right\} = 114 \frac{photons}{mm}$$

- thus in 5 mm thick LAPPD window we produce 570 photons,
- in 14 mm thick aspheric lens we produce 1600 photons,
- assuming 30% mean QE of Na₂KSb photocathode we estimate: 170 p.e. from LAPPD window and 480 p.e. from aspheric lens,
- Geant4 simulation gives 174 p.e. from LAPPD window and 359 p.e. from aspheric lens.