Update on LAPPD R&D at IJS

Samo Korpar et al.

University of Maribor and Jožef Stefan Institute, Ljubljana LAPPD Workshop, 20 April 2023

Outline:

- LAPPD, test setup
- Timing and charge sharing
 - timing variation
- Spacer dead space
- FastIC update

LAPPD - setup

LAPPD #109:

- $\approx 200 \times 200 \ mm^2$
- 20 μm pores @ 25 μm pitch
- resistive anode plane, capacitive coupled readout
- 5 mm thick glass backplate
- 5 HV levels: PC, MCP1in, MCP1out, MCP2in, MCP2out and resistive anode at ground potential
- Standard setup with QDC, TDC, 3D stage ...
- TDC value corrected for time-walk
- ALPHALAS PICOPOWER[™]-LD Series of Picosecond Diode Lasers – 405 nm
- FWHM $\approx 20 \text{ ps}$
- light spot diameter < 100 μ m
- Preliminary results.

LAPPD - sensing electrodes

0 IOtr V2R2 7 2 8 O 0 Õ CC DOW 1.20 0 Gold 173 12 m 0 A22_1 23.1 8 . 9 **INCOM** IJS Sec dof Sec dot O SEC 199 PRI Secartery protos ...

20 April 2023 LAPPD Workshop

20. 4. 2023 (slide 3) Samo Korpar Univ. of Maribor and J. Stefan Institute

PETSYS conn.

0

FastIC

board

conn.

00

LAPPD - time-walk correction

- TDC corrected for time-walk
- timing resolution (prompt peak) $\sigma \approx 40~{\rm ps}$ after time-walk correction

Univ. of Maribor and J. Stefan Institute

H

LAPPD - charge sharing

- more detailed scan between the centres of adjacent pads (top)
- central slice where signal is equally split between the pads (bottom)
- narrow peak is due to the light spot size and photoelectron spread
- longer tail from photoelectron backscattering - ≈ 6 mm on each side $\rightarrow \approx 3 \text{ mm PC} - \text{MCP1} \text{ distance}$

0.8

0.6

0.4

0.2

x 10²

3500

3000

2500

2000

1500

1000

0.8

0.6

0.4

0.2

20. 4. 2023 (slide 6)

Samo Korpar Univ. of Maribor and J. Stefan Institute

20 April 2023 20. 4. 2023 **LAPPD Workshop** (slide 7)

20 April 2023 LAPPD Workshop 20. 4. 2023 (slide 8) Samo Korpar Univ. of Maribor and J. Stefan Institute

Spacer bar area

- scan across spacer bar in y direction
- gain drops within $\approx 10 \ mm$ area, dead area $\approx 4 \ mm$

70

80

ASUM vs. Y

90

1000

900

800

700

600

500

400

300

200

100

20. 4. 2023 (slide 9)

Samo Korpar Univ. of Maribor and J. Stefan Institute

Spacer bar area

• scan across spacer bar in y direction

20 April 2023	
LAPPD Workshop	

20. 4. 2023 (slide 10)

Samo Korpar Univ. of Maribor and J. Stefan Institute

LAPPD + FastIC

- 8 CH ASIC
- Technology 65 nm CMOS
- ~ 6 mW/ch
- Number of channels: 8 SE / 4 DIFF
- Connection Type Configurable SE (Pos/Neg polarity)DIFF, Sum of 4 (Pos/Neg polarity)
- Electronics Time Jitter ~ 25 ps rms
- Energy Resolution Linear (~ 2.5 % Linearity error)

Univ. of Maribor and J. Stefan Institute

20. 4. 2023 (slide 11)

Output LVDS Driver

- 8 channels connected to $\frac{1}{2}$ " pads
- Timing resolution at different positions of laser spot $\approx 115 \ ps$ – no time-walk correction

40

42

t(ns)

10²

Samo Korpar Univ. of Maribor and J. Stefan Institute

LAPPD + FastIC

- Signal too short for TOT detection (may be possible with adjusted FastIC parameters?)
- Charge measured by charge sharing on adjacent pad
- Timing resolution corrected for time-walk by using ADC signal from neighbouring pad $\approx \,70 \; ps$

20 April 2023 LAPPD Workshop

Univ. of Maribor and J. Stefan Institute

10

10²

10

ch12_edge1_pos23

23233

40.34

0.5606

3461/41

 1423 ± 15.0

 40.08 ± 0.00

 0.1148 ± 0.0008

Entries

Mean

Std Dev

 χ^2/ndf

Mean

Sigma

Constant

20 April 2023	
LAPPD Workshop	

LAPPD - induced charge calculations

LAPPD - induced charge estimates

Collected charge by pads of different size and for different (MCP2out-A)/(A-pad) distances. ϵ not included.

LAPPD - HV supply

CAEN HiVolta (DT1415ET), 8 Ch Reversible 1 kV/1 mA Desktop HV Power Supply – floating channels

- 1 kV/1 mA and 0.6 W(!) per channel
- ch.0 MCP2out AN
- ch.1+ch.2 MCP2in MCP2out (2 ch. due to power limit per channel)
- ch.3 MCP1out MCP2in
- ch.4 MCP1in MCP1out
- ch.5 PC MCP1in

ROP voltages A-PC: 500/825(400+425)/200/825/100 V

Custom		VMon	IMon	ISet	Pw	Status	SWVmax
00.000	500.00	500.06	3.8730	50.00	On		500
00.001	400.00	400.16	791.5960	900.00	On		400
00.002	425.00	425.30	791.7310	900.00	On		450
00.003	200.00	200.22	15.7010	50.00	On		200
00.004	825.00	825.46	345.5840	450.00	On		850
00.005	100.00	100.20	0.0680	5.00	On		150

20. 4. 2023 (slide 17)

Samo Korpar Univ. of Maribor and J. Stefan Institute

• transformed signal

• direct signal

Modular readout system for tests

- TDC: 25ps LSB(σ~11ps)
- QDC: dual range 800pC, 200pC

LAPPD - timing disdribution

- measured timing distribution typical for MCP-PMT
- main prompt peak with some inelastic and elastic backscattering contribution
- additional small peak at about 1 ns delay probably due to some reflection (light?), delay not affected by PC-MCP1 voltage
- plot is for the PC-MCP1 voltage of 150 V and ROP for others

LAPPD - induced charge fraction

- fraction of the signal on ch. 2 vs laser spot x position: $f(x) = \frac{q_2}{\sum_i q_i}$
- green band (log scale) indicates the range of a backscattered photoelectrons – twice the PC-MC1 distance (on each side)
- ROP for upper plots and 100 V between MCP2 and A for lower ones
- Signal spread not mainly from electron spread but induced charge spread on coupled electrode

20 April 2023 LAPPD Workshop

20. 4. 2023 (slide 22)

Univ. of Maribor and J. Stefan Institute

LAPPD - PLANCON

LAPPD (capacitive coupling) – BURLE PLANACON (internal anodes) signal spread comparison – same pad size, same range

