

Istituto Nazionale di Fisica Nucleare

Update on LAPPD studies for LHCb ECAL Upgrade II

LAPPD workshop, 20 April 2023

Fabio Ferrari, Daniele Manuzzi, Stefano Perazzini, Vincenzo Vagnoni **INFN Bologna**

Outline

- Reminder of project's aims
 - For further information and previous results, you can have a look at older LAPPD workshops
 - https://indico.bnl.gov/event/17475/
 - https://indico.bnl.gov/event/15059/
- Results from latest beam test at DESY with electrons from 1 to 5.8 GeV (data taken in December 2022)
 - Time resolution
 - Position resolution
 - Detection efficiency

Reminder: timing layer for the LHCb Upgrade-II ECAL

- The LHCb Upgrade-2 will operate in harsh hadronic environment
 - Instantaneous luminosity of proton-proton collisions up to 1.5 x 10³⁴ cm⁻²s⁻¹
 - High background in most central region
 - Measuring time of hits will be crucial to resolve pileup
 - Simulations indicate a time resolution of O(20) ps as necessary
- Insert a LAPPD-based detector between two sections of a sampling calorimeter
 - Detect charged component of EM showers by direct ionization within MCP wafers (no photocathode)
 - Exploit excellent time resolution of MCPs to determine the time of EM shower with O(10-20) ps precision

Experimental setup at DESY

- Z-stack LAPPD with Gen-II anode
 - Stack of 3 MCPs
 - Photocathode-less operation
 - Calorimeter module covering 4 pixels

- LAPPD pixels: G4, G5, H4, H5
- Data sample
 - Voltage scan with electrons at 5 GeV
 - Fixed voltage, position scan with electrons from 1 to 5.8 GeV

DESYtable

LAPPD front view: detail around calorimeter area, in red

E6	E5	E4	E3	
F6	F5	F4	F3	
G6	G5	G4	G3	
H6	H5	H4	H3	

- Front calorimeter module is positioned to cover approximately 4 pixels of the LAPPD
 - Side of SPACAL module is about 4.5 cm while LAPPD pixel pitch is 2.5 cm

LAPPD front view: detail around calorimeter area, in red

E6	E5	E4	E3	
F6	F5	F4	F3	
G6	G5	G4	G3	
H6	H5	H4	H3	
ECAL surface		Beam spots		

(1 for run)

• Different runs are taken to scan the surface of the 4 pixels behind the front calorimeter module

Time measurement

- Analog signals from LAPPD and reference MCP-PMTs sampled by DRS4 at 5 GS/s
- Information from the four pixels combined with a machine learning approach
 - Random Forest Regressor (RF)
 - Input variables
 - Signal amplitudes
 - t_{CFD} at 10%, 50%, 90%
 - Position from tracking chambers
 - the sample

sklearn.ensemble.RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor(n_estimators=100, *, criterion='squared_error', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None) [source]

A random forest regressor.

A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the max_samples parameter if bootstrap=True (default), otherwise the whole dataset is used to build each tree.

Trained on a subsample and then performance measured on the rest of

	MCP IN	GAP 1	MCP MID.	GAP 2	MCP OUT
	ΔV1 [V]	ΔV2 [V]	ΔV3 [V]	ΔV4 [V]	ΔV5 [V]
3 ACTIVE MCPs	685	200	685	200	685
	700	200	700	200	700
	725	200	725	200	725
	750	200	750	200	750
	685	200	725	200	750
2 ACTIVE MCPs	0	200	825	200	825
	0	200	850	200	850
	0	200	875	200	875
	0	200	900	200	900
	0	200	950	200	950
	0	200	750	200	950
	0	200	800	200	950
	0	200	825	200	950
	0	100	875	200	875
	0	200	875	500	875
	0	400	875	200	875

• Better performances achieved with just 2 active MCPs

- Lower transit time and hence spread
- No advantage from configurations with different voltages for each MCP or GAP in the stack

This voltage setup is assumed as baseline in the following slides

Spatial distribution of events

- Fiducial region defined as a rectangle with vertices at pixel centres
- Beam position scanned to cover the entire region
- Due to beam conditions, impossible to have events uniformly distributed, but decent coverage was achieved

5GeV

Time measurement from LAPPD

Gaussian-like distributions, improving from 1 to 5.8 GeV

Time resolution of reference MCPs already subtracted in this plot

Position from LAPPD

Average amplitudes of the LAPPD signal channels @ 5 GeV depending on the position measured by tracking chambers

The signal amplitude encodes information about the position of the impinging electron

- Also hit position estimated combining the information from the four pixels
- A dedicated RF regressor was trained
 - Targets: x and y from tracking chambers
 - Inputs: signal amplitudes from the 4 pixels
 - Outputs: x and y predictions

11

Position from LAPPD

From tracking chambers

Much blurred, but remember that LAPPD pixels are 2.5 cm wide

From LAPPD

Position from LAPPD

Good Gaussianity is observed for each electron energy

Distributions for the y coordinate not shown here, but very similar

Detection efficiency

- Study the cases where no actual LAPPD signal is produced
 - Due to EM shower fluctuations and/or LAPPD intrinsic inefficiency
- Consider as empty events those gathering at minimum values in the distribution of the sum of the 4 pixel amplitudes
- Selection cut for non-empty events A(G4) + A(G5) + A(H4) + A(H5) > 14 mV

Detection efficiency

- Study the cases where no actual LAPPD signal is produced
 - Due to EM shower fluctuations and/or LAPPD intrinsic inefficiency
- Consider as empty events those gathering at minimum values in the distribution of the sum of the 4 pixel amplitudes
- Selection cut for non-empty events A(G4) + A(G5) + A(H4) + A(H5) > 14 mV

Detection efficiency

Energy[GeV]

- 3 MCPs are more efficient at lower energies, as expected (more material for initial electron ionization inside the MCPs)
- 3 MCPs may also be beneficial for high-rate operation, but still to be understood

Conclusions

- LAPPD (z-stack, operated photocathode-less, custom made) data collected at DESY beam test (December 2022) with electrons from 1 to 5.8 GeV
- LAPPD placed at about the shower maximum within a calorimeter module
- Machine learning approach to combine information of multiple LAPPD pixels
- Slightly better time resolution achieved with 2 active MCPs instead of 3 MCPs, in the range 18 ps (5.8 GeV electrons) and 50 ps (1 GeV electrons)
- Although the pixel size was considerably large (2.5 cm pitch), a good position resolution within 3.0 and 4.5 mm was achieved by combining the information of four pixels
- Drop in detection efficiency at 1-2 GeV with 2 MCPs, better with 3 MCPs • Improvements for both time and position resolutions can be expected with slightly
- reduced pixel size (e.g., ~1 cm pitch)
- Upcoming beam test: CERN SPS in June 2023 with electrons from 20 to 100+ GeV, where with higher energies we expect even better performances than DESY • Many thanks to the Incom R&D team for their support!!!

