

LEVERHULME TRUST_____

LAPPD for the Upgrade II of the LHCb RICH Activities in Edinburgh

Stephan Eisenhardt, Silvia Gambetta, Pratik Gheewalla, Franz Muheim, Matthew Needham, <u>Federica Oliva</u>, Owen Shea

University of Edinburgh

LAPPD workshop 20th April 2023

LHCb RICH photodetectors Phase II Upgrade

LAPPD Edinburgh setup

Programmed LAPPD measurements @Edinburgh

- First gain, dark rate study and time resolution extraction
- Future plans in Edinburgh

F. Oliva - LAPPD workshop

Possible candidates LAPPD Motivation LAPPD features

Phase II Upgrade challenge

RICH CHALLENGE:

Cope with the instantaneous luminosity

Be able to detect single photons in extremely high occupancy regions.

MAIN STRATEGY FOR DETECTOR R&D:

reduce the pixel size and add timing

RICH Upgrade II

Simulation Upgrade I

Main technologies considered, R&D planned for each

	SiPM and Solid state PhD	MADMT	UDD*	
	SIFM and Sond-State FID		neb	MCF based FIID
Time res. [ps]	~ 100	~ 150	~ 100 ?	~ 30
Pixel size [mm]	~ 1	2.88	Down to ~100 μm	~ 1
Peak quantum efficiency	50 % at 400 nm	30 to 40 % at 350 nm	30 % at 400 nm	~ 30 % at 350 nm
Dark-count rate [Hz/mm ²]	$O(10^5 - 10^7)$ at room T	< 1	<i>O</i> (1)	<i>O</i> (1)
Radiation hardness	Lattice defects	UV glass window	Si ASIC	UV glass window
Gain ageing (50% loss) [C/cm ²]	SPAD	~ 10 ³	Si ASIC	0(10) ALD
Max anode current [µA/cm ²]	Quenched	~ 20		<i>O</i> (0.1)
Bias voltage [V]	10-100	<i>O</i> (10 ³)	<i>O</i> (10 ⁴)	0(10 ³)
Robustness in B-field	Not affected	RICH 1 shielding (< 5 mT)	Poor, will depend on orientation	Micro-channel (< 2 T)
* Include Pixel-HPI				

** Include MCP-PMT, Image Intensifiers, MCP-ASIC HPDs, LAAPD, ...

LAPPD good candidate thanks to its very good time resolution

Latest table from RICH LS4 upgrade, C.D'Ambrosio, 6th Workshop on LHCb upgrade II

The Large Area Picosecond Photodetector

LAPPD (INCOM US)

Micro Channel Plate photomultiplier, Dimension 20 x 20 cm²

Advantages:

- Time resolution lower than 60 ps
- High gain (~ 10⁷)
- capable of imaging single photons

LAPPD scheme

Fused silica window with photocathode on inside surface

20 cm x 20 cm MCPs, spacers

Gen II LAPPD 97 @ Edinburgh

- ▶ Gen II LAPPD, pixel readout
- Spectral response 160-650 nm
- 5 taps for independent voltage control of the photocathode and entry/exit of each MCP
- readout board used for testing so far as directly provided from INCOM, pixel Pitch to pitch distance 25 mm, effective dimension 24 x 24 mm²

Programmed LAPPD measurements

The LAPPD97 is under test using a pico-second laser source at the Edinburgh laboratories

- HV and current trends
 - Check the HV and current absorption stability
- Noise study and dark counts

dark counts study varying the HV First dark rate study performed

- Laser source alignment procedure
- Measurement of the gain
- Measurement in SP condition Gain VS HV applied study

First gain study centring one pixel

Time resolution

Preliminary results

Future plan

- Tests with customise pixellated board to dicrease the spatial resolution Current plan
- Quantum efficiency study

LAPPD test station@LHCb Edinburgh Laboratory

LAPPD Edinburgh setup

LAPPD in place inside the dark box

DAQ chain

Cables SMA-MCX to the digitiser

Back side

Alternatively SMA-3.5 mm input oscilloscope

First Current & Voltage comparison

Measurements at Edinburgh with the digitiser CAEN DT1742

Digitisation rate up to 5GS/s, bandwidth 500MHz

Dark counts

Time resolution with fast oscilloscope KEYSIGHT UXR0204A

Digitisation rate up to 128 GS/s, bandwidth 20GHz

LAPPD plans

Custom pixelated readout board design in progress, in order to improve the spatial resolution

Some other ideas for the pixel size and patterns

- 8x8 pixels with pitch 2 mm
- 8x4 pixels with pitch 2x4 mm
- 4x8 pixels with pitch 4x2 mm

Work in progress

Plans for September/October 2023

▶ Test beam with the LAPPD 97 at the SPS (CERN), coupled to the RICH fast electronics

Conclusions

- The LHCb RICH collaboration is actively working within the R&D programme for the LHCb RICH Phase II Upgrade
- LAPPD 97 is in under test in Edinburgh
- First promising results have been extracted, compared with the performance directly provided by INCOM
- Tests to achieve the ultimate time resolution of the LAPPD are in progress
- ► In parallel, the design of the custom board is ongoing

LAPPD will be tested in the RICH test beam campaign in autumn, coupled to the RICH fast electronics

