

Multi-Application Validation of ENDF/B-VIII.1

Jesse Brown, Kang Seog Kim, Rike Bostelmann, Germina Ilas

Oak Ridge National Laboratory

CSEWG 2023, Nov. 15th-17th, 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ENDF-8.1 Validation Methods Supporting NRC

ORNL Definition of 8.1-beta2 for testing

- neutrons : commit b8fdd619, tag = version.VIII.1-Beta2 (but!):
 - Also tested $^{\rm 239}{\rm Pu}~\bar{\nu}$ update from Capote
- photoat : commit e26c3d25, <no tags>, phase1
- thermal_scatt: e7c477bd5, tag = version.VIII.1-Beta2, (but!):
 - For conflicting files we use ORNL evaluations and new H_2O :
 - CH_2
 - $-C_5O_2H_8$
 - $-H_2O$ (new low temp.)
 - We do not process:
 - Uranium/Plutonium TSLs (see Chris' talk)
 - Mixed-elastic TSLs
 - ZrH₂, ZrH_x, ZrC, N-UN, ⁷LiH, ⁷LiD
 - Too many Bragg edges
 - BeO, CF₂, ZrH₂
 - How to use?:
 - CaH_2

CAK RIDGE

National Laboratory

SCALE will be changed in the future to recognize new MT

AMPX memory issues when Bragg edges > 7000 ENDF/B-VIII.1-beta2 (as of Oct. 1st, 2023)

AMPX processing

- SCALE-data size is becoming a problem (due to TSLs)
 - ENDF-7.1 = 19 GB
 - ENDF-8.0 = 28 GB (63 GB XML)
 - ENDF-8.1 = 96 GB (230 GB XML)
 - This is partially an "us" problem (SCALE XS sampling and Bragg edges)
 - Sometimes requires more memory than available in RAM for SCALE jobs

Validation & Verification

Use many different application spaces

- Criticality benchmarks (VALID, see Marshall & Greene talk)
- Reactor Criticality (BWR, PWR, Advanced Reactors)
- Depletion RCA
- Depleted Fuel Reactivity (VERA Suite)

Validation: Advanced Reactor Criticality

HTR-10 Benchmark ENDF/B-VII.1 ENDF/B-VIII.0 ENDF/B-VIII.1	k _{eff} 1.00000 +/- 0.00370 1.00301 +/- 0.00019 1.00650 +/- 0.00019 1.00587 +/- 0.00019	∆k [pcm] (ref) 301 +/- 370 650 +/- 370 587 +/- 370	
HTTR Benchmark ENDF/B-VII.1 ENDF/B-VIII.0	1.00250 +/- 0.00710 1.00725 +/- 0.00019 1.01062 +/- 0.00019	(ref) 475 +/- 710 812 +/- 710	
ENDF/B-VIII.I	1.01013 +/- 0.00019	/63 +/- /10	HTR-10* (pebble- HTTR* MSRE* (graphite bed HTGR) (prismatic HTGR) moderated MSR) EBR-11* (SFR)
Benchmark ENDF/B-VII.1 ENDF/B-VIII.0 FNDF/B-VIII.1	0.99978 +/- 0.00420 1.01917 +/- 0.00019 1.02168 +/- 0.00019 1.01776 +/- 0.00019	(ref) 1939 +/- 420 2190 +/- 420 1798 +/- 420	 Fresh fueled HTGR: similar performance of 8.1 vs. 8.0, but ~300 pcm difference to 7.1 because of ²³⁵U and ²³⁸U updates
EBR-II Benchmark ENDF/B-VII.1 ENDF/B-VIII.0 ENDF/B-VIII.1	1.00927 +/- 0.00618 1.00738 +/- 0.00019 1.00713 +/- 0.00019 1.00450 +/- 0.00019	(ref) -189 +/- 618 -214 +/- 618 -477 +/- 618	 Fresh fueled MSRE: almost 400 pcm difference between 8.1 and 8.0 almost exclusively because of ¹⁹F updates SFR with HEU fuel at various levels of burnup: 260 pcm difference between 8.1 and 8.0, almost exclusively because of ⁵²Cr and ⁵³Cr updates

CAK RIDGE

6

*Known discrepancy between MSRE calculation and experiment, update to specifications expected

*Benchmarks specified in the IRPhE Handbook

Verification: MADRE Suite

- Suite of simple unit cell and assembly based on various reactor concepts developed for SCALE library testing: LWR, HTGR, SFR, MSR
- k_{eff} results with ENDF/B-VIII.1 compared to ENDF/B-VIII.0

- Fresh fueled \mbox{LWR} : small k_{eff} differences of less than 150 pcm
- + U/TRU fueled ${\rm SFR}$: $k_{\rm eff}$ larger by up to 800 pcm
- HTGR models: k_{eff} differences between -220 and 800 pcm depending on temperature and burnup
- MSR models: k_{eff} differences between -220 and 300 pcm depending on burnup, temperature, spectrum (moderation)

Validation: Depletion RCA (Ilas)

- Goesgen/MALIBU
- GKN
- Radiochemical Analysis (RCA)
- ENDF-7.0/7.1 Decay Data

¹/₄ assembly model for Gosgen GU3 sample

8

Validation: Depletion RCA vs ENDF-7.1

- Goesgen Reactor, GGU1 sample
- Actinides
- ~70 GWd/t
- UO₂ fuel

Validation: Depletion RCA vs. Experiment

- Goesgen Reactor, GGU1 sample
- Actinides
- ~70 GWd/t
- UO₂ fuel

Validation: Depletion RCA vs. Experiment

Verification: Depleted Fuel Reactivity(Kim)

- Previous investigation on depletion computational benchmarks
 - SERPENT 2.1: ENDF/B-VII.1 and VIII.0 ACE format libraries
 - ENDF/B-VIII.0
 - Underestimate reactivities by ~600 pcm at high burnup (60 MWd/kgU)
 - Dominant nuclides: ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu (in order)

Additional investigation

- ENDF/B-VII.1 vs VIII.0 vs VIII.1 beta2
 - Replace cross sections of VIII.0 for 6 nuclides with ENDF/B-VIII.1 beta2
 - ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu and Capote's ²³⁹Pu
- Benchmark calculations
 - Program
 - SERPENT 2.1
 - Typical PWR single fuel pin (1C) and fuel assembly (2C)
 - 3.1 w/o ²³⁵U
 - 900 K for fuel, 600 K for cladding and moderator
 - Depletion
 - Same fission kappa values and power density

Reminders from CSEWG 2019

- ENDF/B-VII.1 has *low* reactivity at high burnup
- DBRC *lowers* reactivity! (not used)

Verification : ENDF/B-VII.1 vs. ENDF/B-VIII.0

Reactivity underestimation

13

National Laboratory

- VERA Depletion Benchmark Problems
 - PWR single pins and assemblies: SERPENT2 Monte Carlo
- ENDF/B-VIII.0 reactivities are much lower
 - Influencing nuclides: ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu (in order)

Watts Bar, Unit 1

Verification: ENDF/B-VII.1 vs. VIII.0 vs. VIII.1 beta2

Reactivity underestimation

National Laboratory

- VERA Depletion Benchmark Problems
 - PWR single pins and assemblies: SERPENT2 Monte Carlo
- ENDF/B-VIII.0 reactivities are much lower
 - Influencing nuclides: ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu (in order)

Verification: ENDF/B-VIII.0 vs. VIII.1 beta2 (I)

VERA 1C problem (PWR single fuel pin)

- ENDF/B-VIII.0 library + 6 nuclides with ENDF/B-VIII.1 beta2 data
 - ²³⁹PU, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²PU, ²⁴⁰PU

CAK RIDGE

15

National Laboratory

Overall (+100 pcm), ²³⁹Pu (-50 pcm), ²³⁹Pu (Capote, -100 pcm), ²³⁵U (0 pcm), ¹⁶O (0 pcm), ²³⁸U (+100 pcm)
 300

Verification: ENDF/B-VIII.0 vs. VIII.1 beta2 (II)

VERA 2C problem (PWR single fuel assembly)

- ENDF/B-VIII.0 library + 6 nuclides with ENDF/B-VIII.1 beta2 data
 - ²³⁹PU, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²PU, ²⁴⁰PU

CAK RIDGE

National Laboratory

16

Overall (+100 pcm), ²³⁹Pu (-50 pcm), ²³⁹Pu (Capote, -100 pcm), ²³⁵U (0 pcm), ¹⁶O (0 pcm), ²³⁸U (+100 pcm) ₃₀₀

Depleted Fuel Reactivity Discussion

• ENDF/B-VII.1 vs. ENDF/B-VIII.0 vs. ENDF/B-VIII.1 beta 2

- Most influencing nuclides between VII.1 and VIII.0
 - U-238, Pu-239, O-16 and U-235
 - U-238: +300 pcm at 0 burnup & getting decreased at high burnup
 - O-16: -150 pcm at all burnup steps
 - U-235: -150 pcm at all burnup steps
 - Pu-239: -200 pcm at high burnups
- VIII.0 vs. VIII.1 beta 2
 - Overall (6 nuclides): +100 pcm
 - ²³⁹Pu: -50 pcm
 - ²³⁹Pu (Capote): -100 pcm
 - ²³⁵U: 0 pcm
 - ¹⁶O: 0 pcm
 - ²³⁸U: +100 pcm
- VIII.1 beta 2 is slightly better, but there is a similar concern for low reactivity at high burnup points

Conclusions

- We need **many applications** to rigorously test library
- TSLs motivating changes to SCALE XS sampling
- Advanced reactors:
 - Decreasing reactivity for 8.1b2 compared to 8.0, some unexpected nuclides causing major differences (F-19, Cr), no clear performance difference when compared to experiment
- Depletion RCA:
 - High impact isotopes closer to 7.1
 - Small improvement on average (U-5, Pu-9, BC FPs), worse for Am and Cm
- Fuel reactivity:
 - 8.1b2 is higher reactivity at high burnups than 8.0, but likely underpredicting k_{eff} for PWRs at high burnups

CAK RIDGE

Acknowledgements

- This work was supported by the Nuclear Regulatory Commission Office of Research.
- This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
- The entire Nuclear Energy and Fuel Cycle Division at ORNL

Backup Slides

- Goesgen Reactor
- Fission Products

∠ivational Laboratory

21

- Goesgen Reactor
- Fission Products

24