

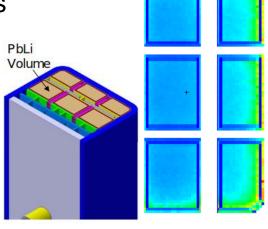
Impact of latest INDEN Cross sections in Fusion Applications and Update of the Fusion Evaluated Nuclear Data Library (FENDL)

Tim Bohm¹, G. Schnabel², R. Capote², D. Lopez Aldama², A. Trkov³, and the FENDL Collaborators

¹University of Wisconsin-Madison, *tim.bohm@wisc.edu*²International Atomic Energy Agency Nuclear Data Section (IAEA-NDS)
³retired, IAEA, currently Josef Stefan Institute

National Nuclear Data Week 2023 CSEWG Validation Session, 16 November, 2023

Outline


- 1) Introduction
 - Neutron libraries examined
 - Computational models used
- 2) Impact of latest INDEN Fe-56 XS
 - ITER 1-D
 - FNSF 1-D
- 3) Impact of latest INDEN Cu-63,65
 - ITER 1-D
- 4) Impact of latest INDEN F-19 XS
 - FNSF FLIBE 1-D
- 5) FENDL Updates

Important Fusion Neutronics Responses

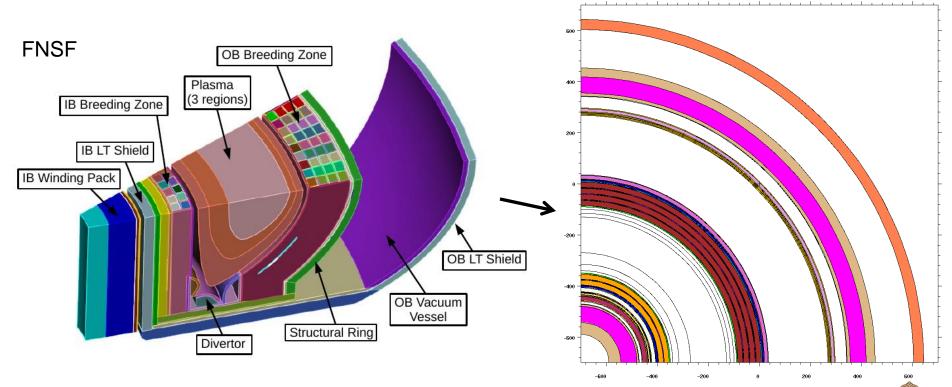
- Neutron flux/fluence (neutron)
 - structure, magnets
- Radiation damage/dpa & transmutation products (neutron)
 - structural material degradation, magnet degradation
- Hydrogen/Helium production (neutron)
 - structural material degradation, re-weldability
- Tritium production (neutron)
 - breeding for D-T reactors, environmental concerns
- Radiation dose (neutron+photon)
 - insulators, electronics, personnel
- Total nuclear heating (neutron+photon)
 - coolant system design, thermal stress, etc. for structure, magnets
- Activation/shutdown dose (photon)
 - maintenance robotics, personnel
 - waste disposal (avoid "high" level waste)

Goal of this work

- Look at the neutronics impact of using the updated neutron libraries in a realistic model of fusion systems using MCNP
- Libraries examined: standard MCNP id
 - Neutron:
 - 1. FENDL-2.1 (21c)
 - 2. FENDL-3.1d (31c)
 - 3. FENDL-3.2b (32c)
 - 4. ENDF/B-VIII.0 (00c)
 - 5. New INDEN evaluations for Fe-56, F-19, Cu-63,65
- ← New work

- Photon:
 - 1. mcplib84 (84p)**

➤ Previous work has shown that mcplib84 produces results similar to the newer MCNP eprdata12 library, the latest MCNP photon library (eprdata14) has not been tested yet

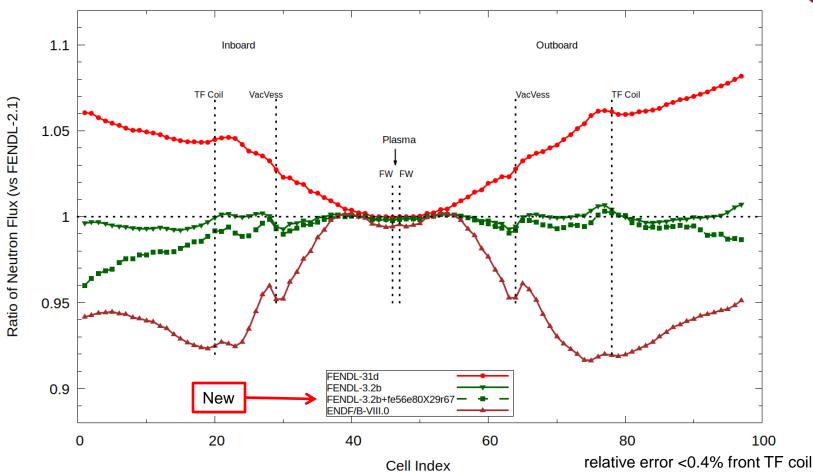


^{*} Bohm T.D, Sawan M.E. "Neutronics calculations to support the Fusion Evaluated Nuclear Data Library (FENDL)", Fusion Science and Technology, Vol 77, p. 813-828, 2021.

^{**}Bohm T.D, Sawan M.E. "The impact of updated cross section libraries on ITER neutronics calculations", Fusion Science and Technology, Vol 68, p. 331-335, 2015.

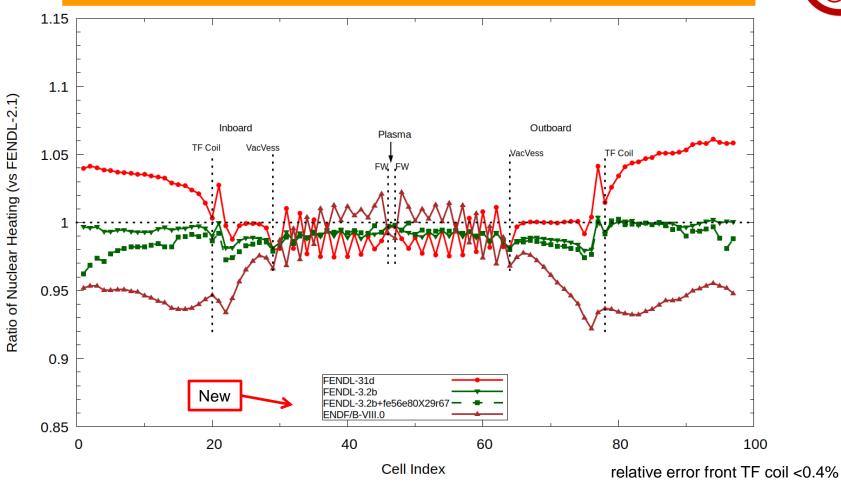
1-D Cylindrical Computational Benchmark Models

- 1. FNSF- Fusion Energy Systems Studies Fusion Nuclear Science Facility
 - Coolant: He gas, structure: RAFM steel, blanket: PbLi, shielding filler: WC, borated steel
- 2. FNSF FLIBE FNSF with a 2(LiF)-1(BeF₂) blanket
 - Coolant: He gas, structure: RAFM steel, blanket: flibe, shielding filler: WC, borated steel
- 3. ITER- Early ITER design
 - Coolant: water, structure: SS-316, blanket: none, shielding filler: borated steel



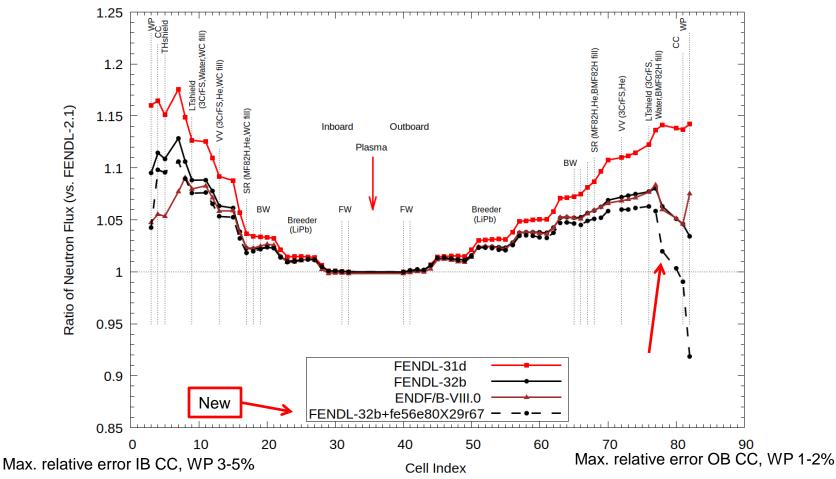
T. Bohm et al. "Initial Neutronics Investigation of a Liquid Metal Plasma Facing Fusion Nuclear Science Facility, Fusion Science and Technology, 2019.

Fe-56 Preliminary Results: Neutron Flux ITER


• FENDL-3.2b and FENDL-3.2b+fe56e80X29r67 are quite close to each other

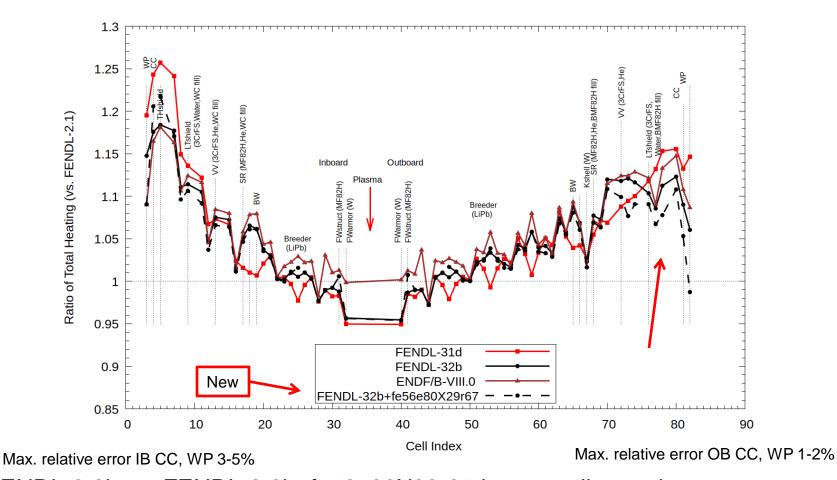
note: FENDL-3.2b uses fe56e80X29r48

Fe-56 Preliminary Results: Total Nuclear Heating ITER


FENDL-3.2b and FENDL-3.2b+f56e80X29r67 are quite close to each other

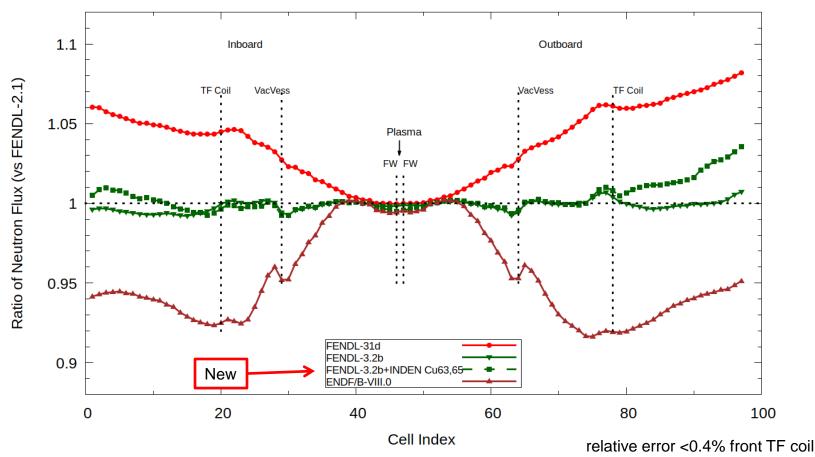
note: FENDL-3.2b uses fe56e80X29r48

Fe-56 Preliminary Results: Neutron Flux FNSF



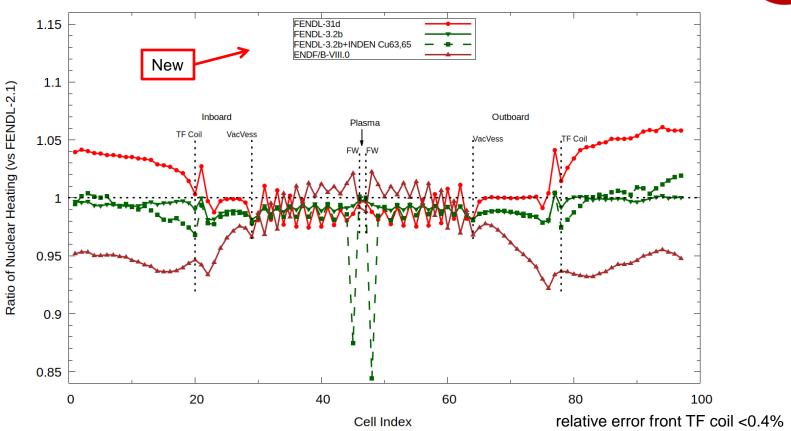
- FENDL-3.2b vs. FENDL-3.2b+fe56e80X29r67 in generally good agreement with each other except deviation at OB LTshield
- OB LTshield uses a thick water cooled borated steel filler
 note: FENDL-3.2b uses fe56e80X29r48

Fe-56 Preliminary Results: Total Nuclear Heating FNSF



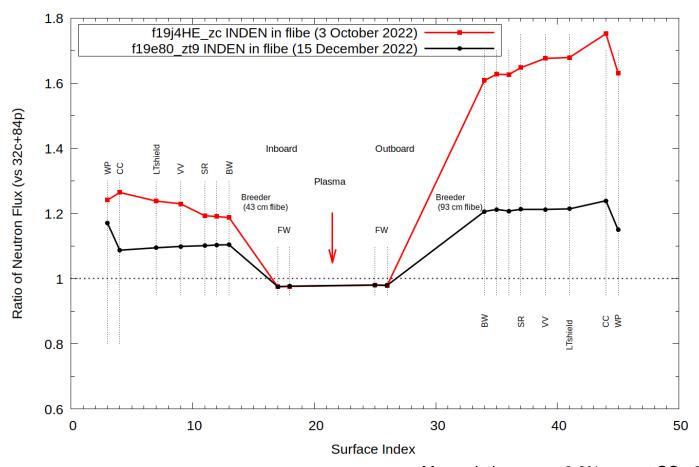
- FENDL-3.2b vs. FENDL-3.2b+fe56e80X29r67 in generally good agreement
- Not seeing deviation at OB LTshield as observed with neutron flux
 - need to refine statistics at deep locations
- > Also: generally good agreement observed for TBR, dpa, helium production

Cu-63,65 Preliminary Results: Neutron Flux ITER



- FENDL-3.2b and FENDL-3.2b +cu63ane6k09aRR +cu65ane5k05 are quite close to each other
- see some deviation deep in TF coil (contains substantial copper)

Cu-63,65 Preliminary Results: Total Nuclear Heating ITER



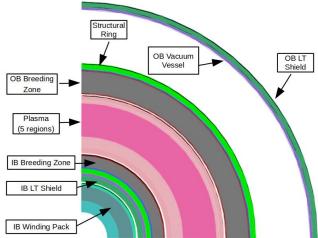
- FENDL-3.2b vs. FENDL-3.2b +cu63ane6k09aRR +cu65ane5k05 we see up to 15% difference in Cu layer (near cell 45 and 48)
 - Due to neutron heating numbers being 0
- Other issues: missing mt 444 (dpa), missing mt 203-207 (total h, d, t, He production)

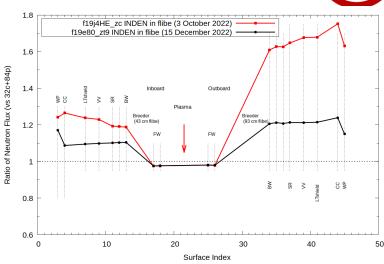
 Bohm CSEWG-2023

F-19 Results: Neutron Flux FNSF FLIBE

Max. relative error <0.6% except CC <2.5% and WP 3.6%

- Neutron flux: higher neutron fluxes behind the flibe breeder vs. FENDL-3.2b
 - > 10-20% higher flux behind the IB flibe breeder zone
 - > 20-70% higher flux behind the OB flibe breeder zone


F-19 Possible Impact on Reactor Design: FNSF FLIBE Model



- For this 1-D model, the e-fold attenuation distance for neutron flux in the SR shield (MF82H face plates
- + He cooled WC filler) was 14 cm
- ➤ Added shielding required to compensate for f19j4HE_zc:

• IB: 3 cm

• OB: 17 cm

Note: a candidate Commonwealth Fusion Systems flibe immersion blanket design has ~25 cm thick IB blanket and 110 cm thick OB blanket

F-19 Results: TBR FNSF FLIBE Model

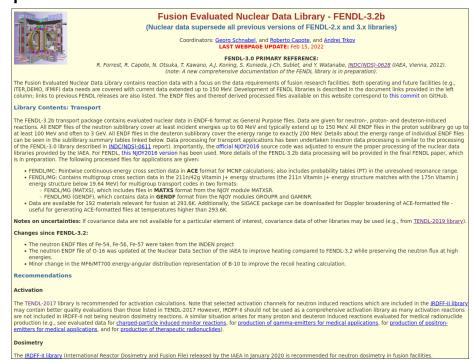
Region	FENDL-3.2b	FENDL-3.2b +INDEN f19j4HE_zc	Ratio	FENDL-3.2b +INDEN f19e80_zt9	Ratio
IB	0.39594	0.39861	1.007	0.39769	1.004
ОВ	0.90622	0.92137	1.017	0.91543	1.010
Total	1.3022	1.3200	1.014	1.31312	1.008
\					l ,

Total TBR:

- increases by 1.4% for f19j4HE_zc in flibe blanket
- increases by 0.8% for f19e80_zt9 in flibe blanket
- > while small, this is good for reactor design since flibe designs tend to need more margin to be tritium self-sufficient

FENDL Library (latest Feb. 2022)

- The Fusion Evaluated Nuclear Data Library (FENDL) is the result of an international effort coordinated by the IAEA Nuclear Data Section
- Assembles a collection of the best nuclear data selected from national cross section data libraries for fusion applications
 - ENDF/B (US), JENDL (Japan), JEFF (Europe), TENDL (EU), RUSFOND/BROND (Russia)


• Process uses fusion specific experimental and calculational benchmarks to

evaluate the data

Data available on-line:

■ web page or github

FENDL-3.2 Sub-libraries:

- Activation TENDL-2017 is the recommended library https://tendl.web.psi.ch/tendl_2017/tendl2017.html
- Dosimetry IRDFF-II is the recommended library https://nds.iaea.org/IRDFF/
- Proton transport (179 evaluations ENDF and ACE format)
- Deuteron transport (179 ENDF, 169 ACE evaluations)
- Photo-atomic transport (61 evaluations ENDF, no ACE)
- **Neutron transport** (192 evaluations in ENDF, ACE, MATXS (deterministic), GENDF (sensitivity)

Status of "Big Paper"

- ➤ Documents FENDL-3.2
- To appear in *Nuclear*Data Sheets December issue

Sections:

- Evaluations selected
- Processing of data
- Validation for the neutron sub-library
 - 1. computational
 - 2. experimental
- Activation library
- to be submitted to Nuclear Data Sheets

FENDL: A library for fusion research and applications

G. Schnabel,^{1,*} D.L. Aldama,² T. Bohm,³ U. Fischer,⁴ S. Kunieda,⁵ A. Trkov,⁶ R. Capote,¹ and To.Be. Completed⁷

¹NAPC-Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria

²Agencia de Energía Nuclear y Tecnologías, La Habana, Cuba

³University of Wisconsin, Madison, Wisconsin

⁴Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

⁵Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

⁶Josef Stefan Institute, Ljubljana, Slovenia

⁷Many more institutions

This is the abstract of the Fusion Evaluated Nuclear Data Library, abbreviated FENDL. This is not yet a meaningful abstract but only a placeholder that needs to be replaced. Here is an example of a reference [1] to the FENDL-3 report. For useful information and guidelines for collaborators, please consult section I.

CONTENTS

I. INFOS FOR COLLABORATORS	2
A. General workflow	2
B. References and citations	2 2 2 2
C. Figures	2
D. Tables	2
II. INTRODUCTION	2
III. EVALUATION	4
A. Neutron library	4
1. Historical background	4
Evaluations prepared by JAEA	5
3. Evaluations from INDEN	6
B. Incident proton data (preliminary by S.K.)	6
C. Incident deuteron data (preliminary by S.I	V.
)	7
D. Comment on available covariance matrices	
IV. PROCESSING	7
A. Processing nuclear data for incident	
neutrons	7
B. Processing nuclear data for incident charge	ed
particles: protons and deuterons	9
V. VERIFICATION AND VALIDATION	9
A. Computational Benchmarks	9
 Leakage Sphere (Fabbri, Laghi) 	9
2. ITER 1-D (Bohm)	13
3. ITER 3-D (Bohm)	15
4. FNSF 3-D (Bohm)	16
V - /	

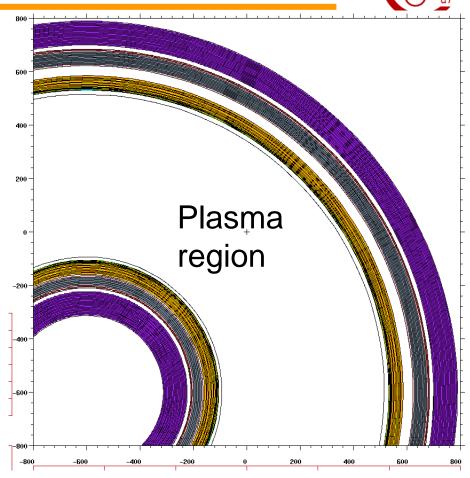
Bohm CSEWG-2023

	5. FNSF 1-D (Bohm)	18
	ITER-1D HCPB and WCLL TBM	
	(Sumini, Isolan)	20
	EU DEMO-3D divertor (Stankunas)	22
	B. Experimental Benchmarks	26
	1. Oktavian (Laghi)	26
	FNS experiments (Konno, Kwon, Ohta,	
	Sato)	29
	 TIARA shielding experiments (Kwon, 	
	Konno)	38
	 FNG Cu, WCLL, W-SS-Water shield 	
	(Angelone)	41
	Research Center Rez 10.7 and 12.7 MeV	
	quasi monoergetic neutron source:	
	Dosimetrical reactions(Schule, Kostal)	45
	 Research Center Rez ²⁵²Cf(s.f.) source: 	
	Ni, Fe, Cu, stainless steel, and Pb leakage	9
	spectrum and dosimetrical reactions	
	(Schule, Kostal)	46
	7. LLNL Pulsed Sphere (Neudecker)	49
	8. JET Activation Foils (Zohar)	50
	SINBAD benchmarks (Ivo Kodeli)	53
	1.0000001	_
V1.	ACTIVATION	56
VII.	FUTURE DATA NEEDS	57
VIII.	CONCLUSION	57
	References	57
	1. Neutron sublibrary table	65
	2. Example appendix	65

Future Work for FENDL

- Follow up on issues from current validation efforts
- Develop more computational benchmarks for existing and emerging reactor designs
 - □ e.g., variety of blanket designs: Li ceramics, flibe, and chloride salt
- Incorporate more experimental and computational benchmarks into JADE (automation/continuous integration package)
- Extend JADE V&V to Linux platform, open source spreadsheet, and add OpenMC inputs for transport calculations
- Validation of proton and deuteron transport libraries
- Prepare consistent covariance matrices for uncertainty analysis
 - ☐ It is important to determine the uncertainty due to nuclear data for key neutronics responses in reactor design (e.g. TBR)
- Other user requests?

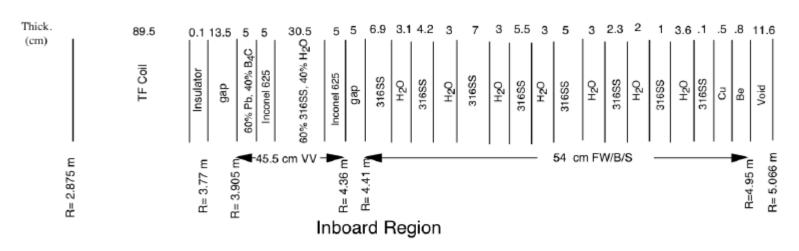
Backup slides



ITER 1-D Cylindrical Calculation Benchmark

CNERG

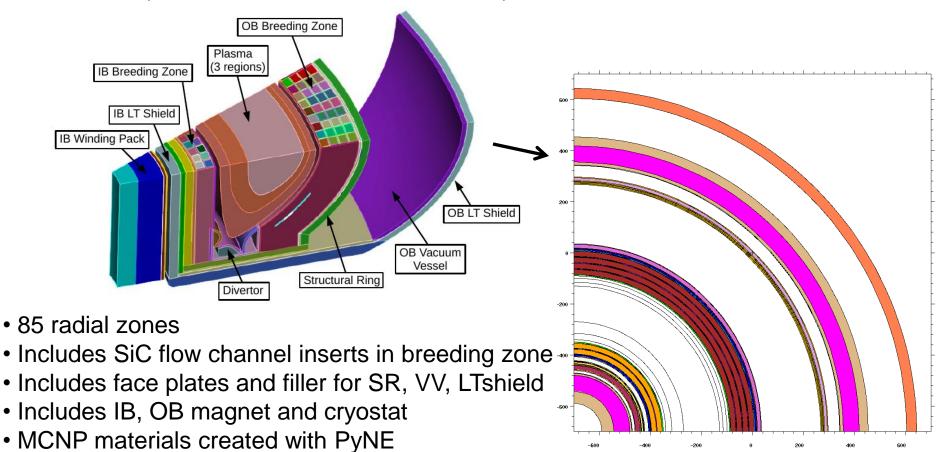
- Based on an early ITER design
- Developed for the FENDL evaluation process
- Simple but realistic model of ITER with the Inboard and Outboard portions modeled with the plasma in between
- D-T fusion (14.1 MeV neutrons)
- Flux (neutron and photon),
 heating, dpa, and gas production
 calculated



M. Sawan, FENDL Neutronics Benchmark: Specifications for the calculational and shielding benchmark, INDC(NDS)-316, December 1994



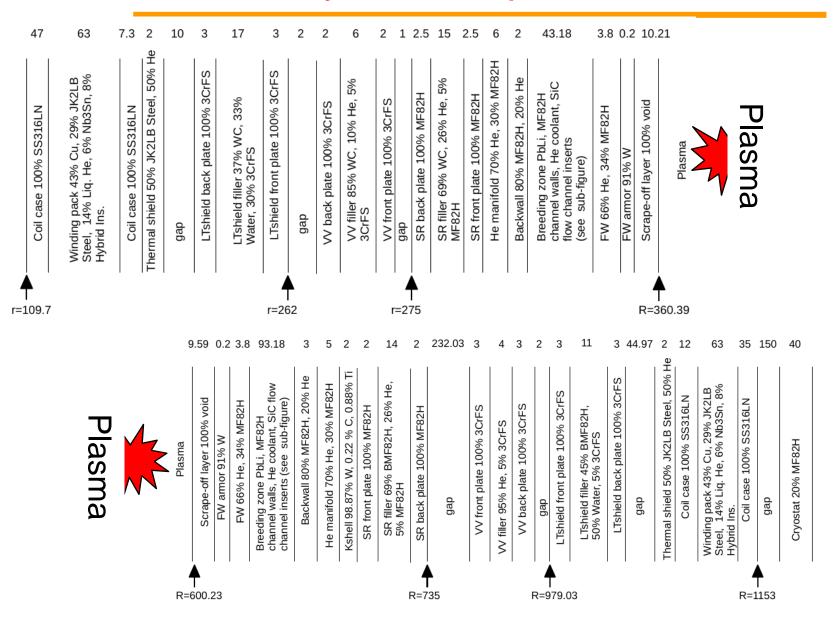
ITER 1-D Cylindrical Benchmark continued



Outboard Region

FNSF 1-D Cylindrical Computational Benchmark

- Fusion Energy Systems Studies Fusion Nuclear Science Facility (FESS-FNSF)
- ➤ Breeding Zone: He cooled steel structure (90 w/o Fe, 7.5 w/o Cr, 2 w/o W, 0.2 w/o V), PbLi breeder (Dual Coolant Lithium Lead-DCLL)

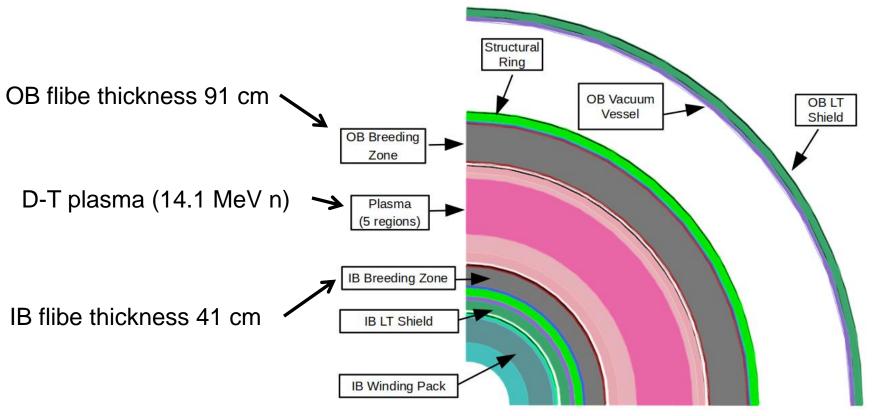


T. Bohm et al. "Initial Neutronics Investigation of a Liquid Metal Plasma Facing Fusion Nuclear Science Facility, Fusion Science and Technology, 2019.

FNSF 1-D Cylindrical Computational Benchmark

FNSF 1-D Benchmark- Details of IB Breeder Zone

Flow Channel Insert 100% SiC Thin layer 100% PbLi Cooling channel wall 58% MF82H, 42% He Thin layer 100% PbLi Flow Channel Insert 100% SiC Flow Channel Insert 100% SiC Thin layer 100% PbLi	
Thin layer 100% PbLi	100% le, 349
	FW 66% He, 34% MF82H
	FW 66% He, 34% MF82H


➤OB Breeder zone similar but has 4 PbLi channels

1-D Cylindrical Computational Benchmark (flibe blanket)

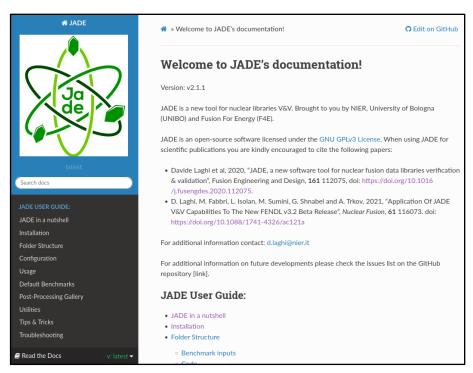
- ➤ Molten salt 2(LiF)-1(BeF₂) sometimes proposed as a liquid blanket
 - ➤ Commonwealth Fusion Systems reactor design
- ➤ INDEN provides a new XS for ¹⁹F: https://www-nds.iaea.org/INDEN/
- Created 1-D model based on FESS-FNSF but modified the blanket:
 - Breeding Zone: 2 cm Be multiplier layer, flibe breeder tank

Source of FENDL neutron data

- 65/180 isotopes in FENDL-3 come from ENDF/B-VII.1
 - > See Table 1 in INDC(NDS)-0628
- Some key isotopes:

Isotope	FENDL-2.1*	FENDL-3.1	FENDL-3.2b (for E<20 MeV)
H-1	JENDL-3.3	ENDF/B-VII.1	ENDF/B-VII.1
0-16	ENDF/B-VI.8	ENDF/B-VII.1	FENDL/INDEN1.0**
Cr-52	ENDF/B-VI.8	ENDF/B-VII.1	INDEN1.0**
Fe-56	JEFF-3	JEFF-3.1.1	INDEN1.0**
Ni-58	JEFF-3	ENDF/B-VII.0	ENDF/B-VII.1
Cu-63,65	ENDF/B-VI.8	ENDF/B-VII.0	ENDF/B-VII.0

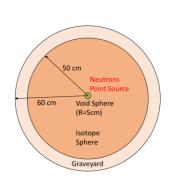
*FENDL-2.1 is the design/reference library for ITER neutronics

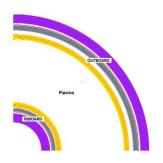


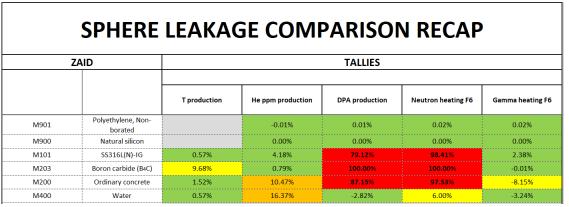
^{**}INDEN International Nuclear Data Evaluation Network https://www.nds.iaea.org/INDEN/

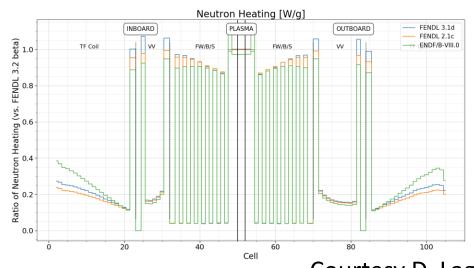
JADE: FENDL V&V automation

- Tool to automate validation testing of FENDL (and other libs)
- > Developed as a collaboration: F4E, NIER, UNIBO, IAEA
- ➤ Includes computational and experimental benchmarks
- Uses python, Windows OS, MS Office (tables), MCNP
- Available on github, see full documentation: https://jade-a-nuclear-data-libraries-vv-tool.readthedocs.io/en/latest/




JADE continued


- > Generates tables of differences (color coded by percent differences for easy user identification)
- Generates easy to read plots for comparisons of results



Sphere leakage

ITER 1-D

