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Outline
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1) Introduction
• Neutron libraries examined

• Computational models used

2) Impact of latest INDEN Fe-56 XS 
• ITER 1-D

• FNSF 1-D

3) Impact of latest INDEN Cu-63,65 
• ITER 1-D

4) Impact of latest INDEN F-19 XS
• FNSF FLIBE 1-D

5) FENDL Updates
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Important Fusion Neutronics Responses
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• Neutron flux/fluence (neutron)

• structure, magnets 

• Radiation damage/dpa & transmutation 

products (neutron)
• structural material degradation, magnet degradation

• Hydrogen/Helium production (neutron)
• structural material degradation, re-weldability

• Tritium production (neutron)
• breeding for D-T reactors, environmental concerns

• Radiation dose (neutron+photon)
• insulators, electronics, personnel

• Total nuclear heating (neutron+photon)
• coolant system design, thermal stress, etc. for 

structure, magnets

• Activation/shutdown dose (photon)
• maintenance robotics, personnel 

• waste disposal (avoid “high” level waste)

ITER DCLL TBM

ITER Shield Block
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Goal of this work

 Look at the neutronics impact of using the updated neutron 

libraries in a realistic model of fusion systems using MCNP

 Libraries examined:
• Neutron:

1. FENDL-2.1 (21c)

2. FENDL-3.1d (31c)

3. FENDL-3.2b (32c)

4. ENDF/B-VIII.0 (00c)

5. New INDEN evaluations for Fe-56, F-19, Cu-63,65

• Photon:

1. mcplib84 (84p)**

4

 Previous work has shown that mcplib84 produces results 

similar to the newer MCNP eprdata12 library, the latest 

MCNP photon library (eprdata14) has not been tested yet

* Bohm T.D, Sawan M.E. “Neutronics calculations to support the Fusion Evaluated Nuclear Data 

Library (FENDL)”, Fusion Science and Technology, Vol 77, p. 813-828, 2021.

**Bohm T.D, Sawan M.E. “The impact of updated cross section libraries on ITER neutronics 

calculations”, Fusion Science and Technology, Vol 68, p. 331-335, 2015.

standard MCNP id

New work
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1-D Cylindrical Computational Benchmark Models
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1. FNSF- Fusion Energy Systems Studies Fusion Nuclear Science Facility
• Coolant: He gas, structure: RAFM steel, blanket: PbLi, shielding filler: WC, borated steel

2. FNSF FLIBE- FNSF with a 2(LiF)-1(BeF2) blanket
• Coolant: He gas, structure: RAFM steel, blanket: flibe, shielding filler: WC, borated steel

3. ITER- Early ITER design
• Coolant: water, structure: SS-316, blanket: none, shielding filler: borated steel

T. Bohm et al. “Initial Neutronics Investigation of a Liquid Metal Plasma Facing Fusion Nuclear Science Facility, 

Fusion Science and Technology, 2019.

FNSF
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Fe-56 Preliminary Results: Neutron Flux ITER
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• FENDL-3.2b and FENDL-3.2b+fe56e80X29r67 are quite close to each other

note: FENDL-3.2b uses fe56e80X29r48

relative error <0.4% front TF coil

New
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Fe-56 Preliminary Results: Total Nuclear Heating ITER

7

FENDL-3.2b and FENDL-3.2b+f56e80X29r67 are quite close to each other

note: FENDL-3.2b uses fe56e80X29r48

relative error front TF coil <0.4%

New
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Fe-56 Preliminary Results: Neutron Flux FNSF
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• FENDL-3.2b vs. FENDL-3.2b+fe56e80X29r67 in generally good agreement with 

each other except deviation at OB LTshield

 OB LTshield uses a thick water cooled borated steel filler

note: FENDL-3.2b uses fe56e80X29r48

Max. relative error OB CC, WP 1-2%Max. relative error IB CC, WP 3-5%

New
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Fe-56 Preliminary Results: Total Nuclear Heating FNSF
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• FENDL-3.2b vs. FENDL-3.2b+fe56e80X29r67 in generally good agreement

• Not seeing deviation at OB LTshield as observed with neutron flux

 need to refine statistics at deep locations

 Also: generally good agreement observed for TBR, dpa, helium production

Max. relative error OB CC, WP 1-2%Max. relative error IB CC, WP 3-5%

New
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Cu-63,65 Preliminary Results: Neutron Flux ITER
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• FENDL-3.2b and FENDL-3.2b +cu63ane6k09aRR +cu65ane5k05 are quite 

close to each other

• see some deviation deep in TF coil (contains substantial copper)

relative error <0.4% front TF coil

New
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Cu-63,65 Preliminary Results: Total Nuclear Heating ITER
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FENDL-3.2b vs. FENDL-3.2b +cu63ane6k09aRR +cu65ane5k05 we see up 

to 15% difference in Cu layer (near cell 45 and 48)

• Due to neutron heating numbers being 0

• Other issues: missing mt 444 (dpa), missing mt 203-207 (total h, d, t, He 

production)

relative error front TF coil <0.4%

New
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F-19 Results: Neutron Flux FNSF FLIBE 
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• Neutron flux: higher neutron fluxes behind the flibe breeder vs. FENDL-3.2b 

 10-20% higher flux behind the IB flibe breeder zone

 20-70% higher flux behind the OB flibe breeder zone

Max. relative error <0.6% except CC <2.5% and WP 3.6%
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F-19 Possible Impact on Reactor Design: FNSF FLIBE Model
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Note: a candidate Commonwealth Fusion Systems flibe immersion blanket 

design has ~25 cm thick IB blanket and 110 cm thick OB blanket

• For this 1-D model, the e-fold 

attenuation distance for neutron flux 

in the SR shield (MF82H face plates 

+ He cooled WC filler) was 14 cm

 Added shielding required to 

compensate for f19j4HE_zc:
• IB: 3 cm

• OB: 17 cm
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F-19 Results: TBR  FNSF FLIBE Model
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• Total TBR: 

• increases by 1.4% for f19j4HE_zc in flibe blanket

• increases by 0.8% for f19e80_zt9 in flibe blanket

 while small, this is good for reactor design since flibe

designs tend to need more margin to be tritium self-sufficient

Region FENDL-3.2b FENDL-3.2b 

+INDEN 

f19j4HE_zc

Ratio FENDL-3.2b 

+INDEN

f19e80_zt9

Ratio

IB 0.39594 0.39861 1.007 0.39769 1.004

OB 0.90622 0.92137 1.017 0.91543 1.010

Total 1.3022 1.3200 1.014 1.31312 1.008
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FENDL Library (latest Feb. 2022)

• The Fusion Evaluated Nuclear Data Library (FENDL) is the result of an 

international effort coordinated by the IAEA Nuclear Data Section

• Assembles a collection of the best nuclear data selected from national cross 

section data libraries for fusion applications

• ENDF/B (US), JENDL (Japan), JEFF (Europe), TENDL (EU), 

RUSFOND/BROND (Russia)

• Process uses fusion specific experimental and calculational benchmarks to 

evaluate the data

• Data available on-line:
 web page or github

15
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FENDL-3.2 Sub-libraries:
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• Activation – TENDL-2017 is the recommended library

https://tendl.web.psi.ch/tendl_2017/tendl2017.html

• Dosimetry – IRDFF-II is the recommended library

https://nds.iaea.org/IRDFF/

• Proton transport (179 evaluations ENDF and ACE format)

• Deuteron transport (179 ENDF, 169 ACE evaluations)

• Photo-atomic transport (61 evaluations ENDF, no ACE)

• Neutron transport (192 evaluations in ENDF, ACE, MATXS 

(deterministic), GENDF (sensitivity)
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Status of “Big Paper”
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Documents FENDL-3.2

To appear in Nuclear 

Data Sheets December 

issue 

Sections:

• Evaluations selected

• Processing of data

• Validation for the 

neutron sub-library
1. computational

2. experimental

• Activation library

• to be submitted to 

Nuclear Data Sheets
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Future Work for FENDL
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• Follow up on issues from current validation efforts

• Develop more computational benchmarks for existing and 

emerging reactor designs 
 e.g., variety of blanket designs: Li ceramics, flibe, and chloride salt

• Incorporate more experimental and computational 

benchmarks into JADE (automation/continuous integration 

package)

• Extend JADE V&V to Linux platform, open source 

spreadsheet, and add OpenMC inputs for transport calculations

• Validation of proton and deuteron transport libraries

• Prepare consistent covariance matrices for uncertainty 

analysis
 It is important to determine the uncertainty due to nuclear data for key 

neutronics responses in reactor design (e.g. TBR)

• Other user requests?
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Backup slides
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ITER 1-D Cylindrical Calculation Benchmark
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• Based on an early ITER design

• Developed for the FENDL 

evaluation process

• Simple but realistic model of 

ITER with the Inboard and 

Outboard portions modeled with 

the plasma in between

• D-T fusion (14.1 MeV neutrons)

• Flux (neutron and photon), 

heating, dpa, and gas production 

calculated

M. Sawan, FENDL Neutronics Benchmark: Specifications for the 

calculational and shielding benchmark, INDC(NDS)-316, December 1994

Plasma

region
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ITER 1-D Cylindrical Benchmark continued
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FNSF 1-D Cylindrical Computational Benchmark
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 Fusion Energy Systems Studies Fusion Nuclear Science Facility (FESS-FNSF)

 Breeding Zone: He cooled steel structure (90 w/o Fe, 7.5 w/o Cr, 2 w/o W, 0.2 w/o V), 

PbLi breeder (Dual Coolant Lithium Lead-DCLL)

• 85 radial zones

• Includes SiC flow channel inserts in breeding zone

• Includes face plates and filler for SR, VV, LTshield

• Includes IB, OB magnet and cryostat

• MCNP materials created with PyNE

T. Bohm et al. “Initial Neutronics Investigation of a Liquid Metal Plasma Facing Fusion Nuclear Science Facility, 

Fusion Science and Technology, 2019.
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FNSF 1-D Cylindrical Computational Benchmark

23

P
la

s
m

a

P
la

s
m

a



Bohm CSEWG-2023 

FNSF 1-D Benchmark- Details of IB Breeder Zone
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OB Breeder zone similar but has 4 PbLi channels
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1-D Cylindrical Computational Benchmark (flibe blanket)
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 Molten salt 2(LiF)-1(BeF2) sometimes proposed as a liquid blanket
 Commonwealth Fusion Systems reactor design 

 INDEN provides a new XS for 19F: https://www-nds.iaea.org/INDEN/

 Created 1-D model based on FESS-FNSF but modified the blanket:

• Breeding Zone: 2 cm Be multiplier layer, flibe breeder tank

OB flibe thickness 91 cm

IB flibe thickness 41 cm

D-T plasma (14.1 MeV n)
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Source of FENDL neutron data

• 65/180 isotopes in FENDL-3 come from ENDF/B-VII.1
 See Table 1 in INDC(NDS)-0628

• Some key isotopes:

Isotope FENDL-2.1* FENDL-3.1 FENDL-3.2b (for E<20 MeV)

H-1 JENDL-3.3 ENDF/B-VII.1 ENDF/B-VII.1

0-16 ENDF/B-VI.8 ENDF/B-VII.1 FENDL/INDEN1.0**

Cr-52 ENDF/B-VI.8 ENDF/B-VII.1 INDEN1.0**

Fe-56 JEFF-3 JEFF-3.1.1 INDEN1.0**

Ni-58 JEFF-3 ENDF/B-VII.0 ENDF/B-VII.1

Cu-63,65 ENDF/B-VI.8 ENDF/B-VII.0 ENDF/B-VII.0

26

*FENDL-2.1 is the design/reference library for ITER neutronics

**INDEN International Nuclear Data Evaluation Network

https://www.nds.iaea.org/INDEN/
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JADE: FENDL V&V automation
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 Tool to automate validation testing of FENDL (and other libs)

 Developed as a collaboration: F4E, NIER, UNIBO, IAEA

Includes computational and experimental benchmarks

 Uses python, Windows OS, MS Office (tables), MCNP

 Available on github, see full documentation: 
https://jade-a-nuclear-data-libraries-vv-tool.readthedocs.io/en/latest/
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JADE continued
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 Generates tables of differences (color coded by percent 

differences for easy user identification)

 Generates easy to read plots for comparisons of results

Sphere leakage

ITER 1-D Courtesy D. Laghi


