

Introduction to covariance session and covariance testing

D. Neudecker CSEWG 11/15/2023

LA-UR-23-32802

Thanks to: Nathan Gibson + template team!

We are in the home-stretch of ENDF/B-VIII.1. Let's make sure we have great covariances!

Updates from the covariance session:

- Many covariances were released as part of VIII.1 beta libraries. <u>Thank you!!!</u>
- Testing is ongoing. <u>Thank you!!!</u>
- Please, to make this a great library for covariances, fix issues found!
 Other:
- 6 out of 7 template papers published as special issue in EPJ-N!
 - https://www.epj-n.org/component/toc/?task=topic&id=1953
- Report on UQ needs for the next 5-10 years coming out soon.

These covariances changed from VIII.1beta1 -> beta2:

- Light elements: 001-H-001/002, 003-Li-006/007, 005-B-010
- 011-Na-023, 012-Mg-024, 013-Al-027, 014-Si-029, 015-P-031, 016-S-032, 019-K-039, 019-K-041, 023-V-051, 025-Mn-055, 033-As-075, 036-Kr-086, 036-Kr-086, 039-Y-089, 040-Zr-090, 044-Ru-102, 045-Rh-103, 053-I-127, 054-Xe-132, 58-Ce-140/ 142, 059-Pr-141, 060-Nd-143, 061-Pm-147, 063-Eu-155, 064-Gd-152/160, 069-Tm-169/ 170, 079-Au-197, -Bi-209
- 022-Ti: 046, 047, 048,
- 026-Fe-054, 027-Co-059, 028-Ni-058, 028-Ni-060
- 030-Zn: 064, 067, 068
- 042-Mo: 092, 097, 098, 100
- 066-Dy: 156, 158, 160, 161, 162, 163, 164
- 082-Pb: 204, 206-208
- Actinides: 092-U-233/ 235, 094-Pu-239/ 240
 - List from Nathan Gibson.

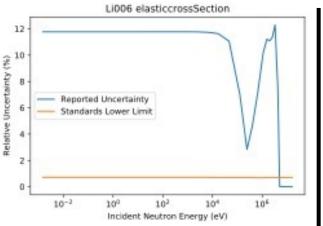
How did we get and test the covariances?

- Nathan Gibson processed MF=31,32,33 with NJOY2016,
- They were processed onto a LANL-defined 51-energy grid, and put into json file.
- They were tested via Denise Neudecker's ``CovVal'' code for:
 - Maths properties: positive semi-definite, symmetry, |cor| <=1
 - Physics properties: checking if relative uncertainties are within
 - Expert judgment limits by Don Smith,
 - Template limits,
 - Standards limit,
 - PUBs (fission only).

CovVal testing is documented in Neudecker, "Definitions on Testing Whether Evaluated Nuclear Data Relative Uncertainties are Realistic in Size", LA-UR-21-32171 (2021). Comment: I also have that for all ENDF/B-VIII.0 covariances if there is interest.

Mathematical checks performed:

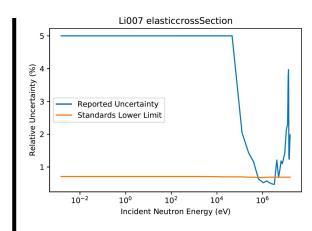
Passed all


K-39, K-041, I-127, Fe-54, Co-59, Kr-86, Xe-132, Ce-140, Pr-141, Nd-143, Gd-160, Dy-161, Dy-163, Tm-170, Pb-207,

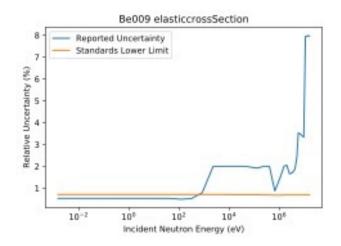
Failed |correlations| <= 1

B-10, Li-06, Li-007, U-235, Na-23, Mg-024, Al-27, Si-29, Ti-46, Ti-47, Ti-48, U-233, Mn-55, Ni-58, Ni-60, Rh-103, Ce-142, Dy-156, Dy-158, Dy-160, Dy-162, Dy-164, Pb-206, Pu-239, Pu-240

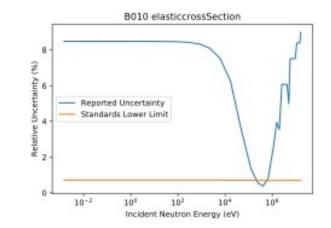
Likely a problem of strong correlations leading to |correlations| ever so slightly >1 when transformed to 51-bin grid.



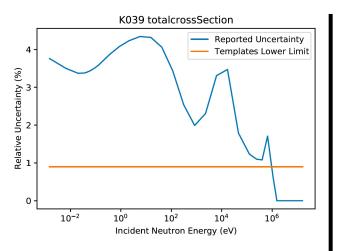
5 (% 4 A Vitigation 3 -Reported Uncertainty Templates Lower Limit 1 -10⁻² 10⁰ 10² 10⁴ 10⁶ Incident Neutron Energy (eV)

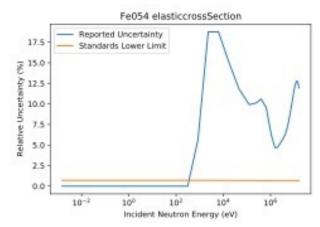

Li007 totalcrossSection

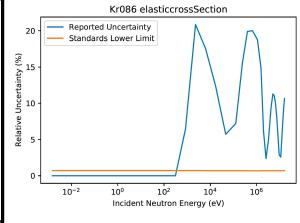
Could the bins of uncertainties end too low in energy for ⁶Li(n,el) cs covariances? Is the ⁷Li(n,tot) cs uncertainty realistic in size? It is below the ¹H(n,el) cs unc.



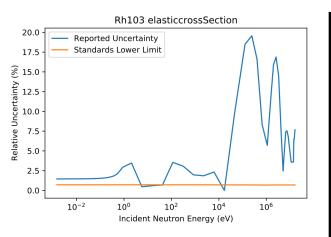
Is the ⁷Li(n,el) cs uncertainty realistic in size? Do we know it better than the C(n, n) cs?


Is the ⁹Be(n,el) cs uncertainty realistic in size? It is below the ¹H(n,el) cs unc.

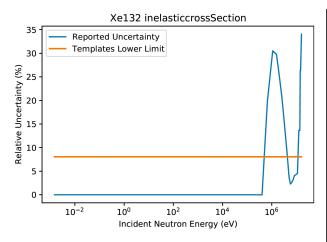

Is the ¹⁰B(n,el) cs uncertainty realistic in size? Do we know it better than the C(n, n) cs?


Missing covariances:

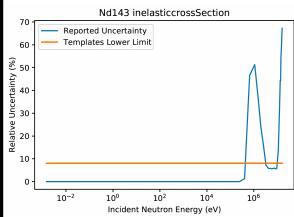
Is the ³⁹K(n,el) cs uncertainty zero above 2 MeV? Is there an issue in formatting, data, processing, or are fast covariances missing?



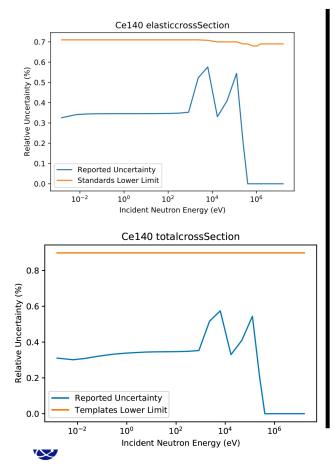
Why is the ⁵⁴Fe(n,el) uncertainty zero below 100 eV? Is there an issue in formatting, data, processing, or are RRR covariances missing?

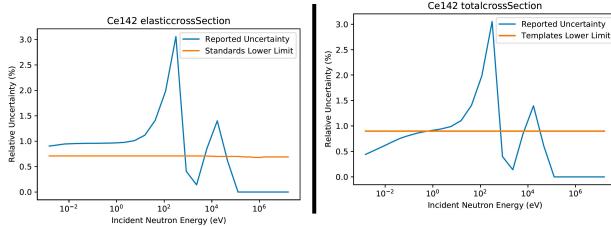


Is the ⁸⁶Kr(n,el) cs uncertainty zero below 100 eV? Is there an issue in formatting, data, processing, or are RRR covariances missing?



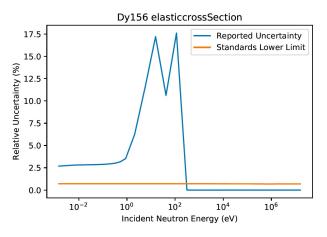
Is the 103 Rh(n,el) cs uncertainty realistic in size? Do we know it better than the C(n, n) cs?

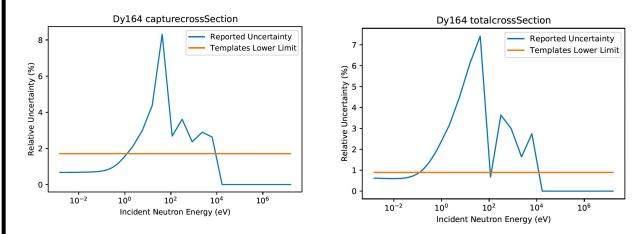

¹³²Xe(n,inl) cross section uncertainties have surprising structures that one might want to take a second look at.



¹⁴³Nd(n,inl) cross section uncertainties have surprising structures that one might want to take a second look at.

Missing covariances and low uncertainties for Ce.

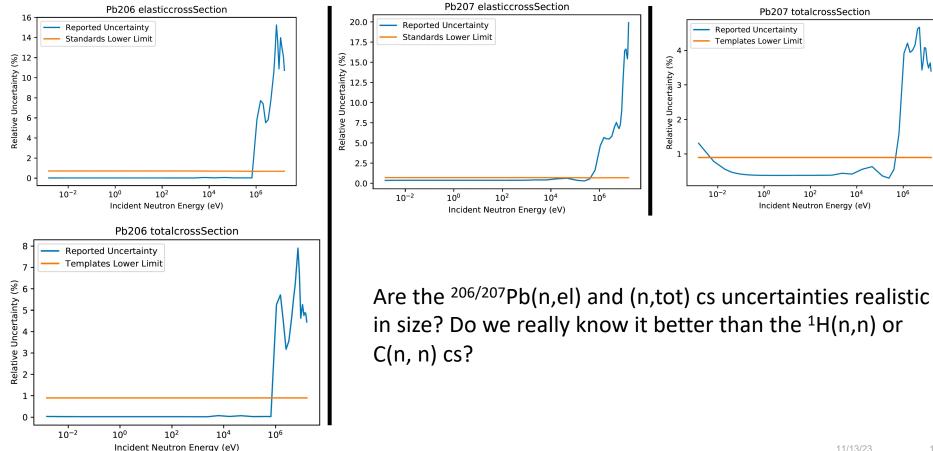


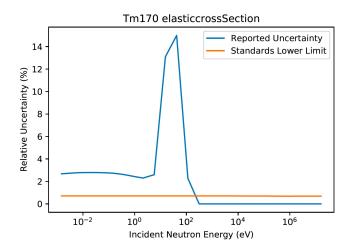

Are the ${}^{140/142}$ Ce(n,el) and (n,tot) cs uncertainties realistic in size? Do we really know it better than the 1 H(n,n) or C(n, n) cs?

Also, why is it zero above 100 keV? Are we missing fast covariances?

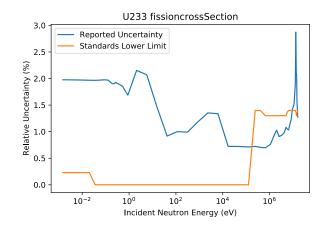
Dy covariances: zero uncertainties for some fast cross sections. Processing, missing data, or formatting issue?

Why is the ^{156,158}Dy(n,el) uncertainty zero above 100 eV? Is there an issue in formatting, data, or processing, or are we missing fast covariances?

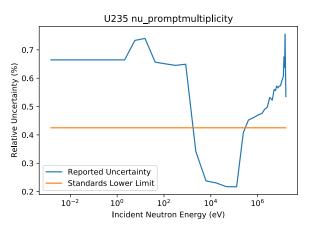


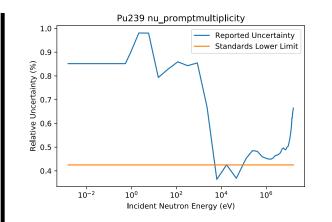

For ¹⁶⁰⁻¹⁶⁴Dy(n,el) zero uncertainties for E >1-10 keV for:

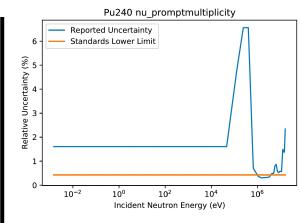
- (n,tot),
- (n,el),
- Capture.



Missing covariances and low uncertainties for Pb.




Is the ¹⁷⁰Tm(n,el) cs uncertainty zero above 1 keV? Is there an issue in formatting, data, processing, or are fast covariances missing?



The ²³³U(n,f) cross section and PFNS uncertainty is below the ²³⁵U(n,f) cs and ²⁵²Cf(sf) PFNS standard.

The URR ²³⁵U(n,f) nu-bar uncertainty is below the ²⁵²Cf(sf) standard. The URR ²³⁹Pu(n,f) nu-bar uncertainty is below the ²⁵²Cf(sf) standard. The fast ²⁴⁰Pu(n,f) nu-bar and (n,f) cs uncertainty is below the ²⁵²Cf(sf) nu-bar and ²³⁵U(n,f) cs standard.

Acknowledgements

- Research reported in this publication was supported by the U.S. Department of Energy ASC-PEM and V&V program at Los Alamos National Laboratory.
- Research reported in this publication was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

