

Pu9(n,f) cross section covariances including USU components

Georg Schnabel

Nuclear Data Section Division of Physical and Chemical Sciences NAPC Department for Nuclear Sciences and Applications IAEA, Vienna

> CSEWG Meeting 15 November 2023

Outline

- From GMAP to probabilistic programming
- Evaluation with USU components
- Updating covariance matrices consistently

GMAP

Ref: W.P. Poenitz, "Data interpretation, objective evaluation procedures and mathematical techniques for the evaluation of energy-dependent ratio, shape and cross section data", Proc. of the Conf. on Nuclear Data Evaluation and Procedures (1981)

Probabilistic programming

- **GMAP** translated to Python and modernized
- **gmapy** is a package/framework for nuclear data evaluation:
 - Leverages Tensorflow probability
 - Nuclear data evaluation scenarios can be formulated as probabilistic programs

TensorFlow

IAEA-NDS / gmapy (Public)						
<> Code (🕤 Issues 🛛 រំា	Pull requests		🗠 Insights		
			وہ master ج ہو 9 branches و 18 ta	gs Go	Go to file Code 👻	
			gschnabel fix one unittest for MCMC	1afed81 on Mar 23	🔁 1,281 commits	
			📄 docs	first commit of documentation stub	last year	
			examples	change interface of CompoundMap class	9 months ago	
			📄 gmapy	improve MH algo stuff: relativ errors, seeding and parallel processing	g 8 months ago	
			legacy-tests	rename gmapi to gmapy	last year	
			tests	fix one unittest for MCMC	8 months ago	
			🗋 .gitignore	add .gitignore file to repo	last year	
			DOCUMENTATION.md	correct variable name in DOCUMENTATION	last year	
				add MIT license	last year	
			C README.md	correct install instruction	last year	
			🗋 environment.yml	add environment.yml	last year	
			poetry.lock	update poetry.lock	last year	
			pyproject.toml	add function for effective sample size computation	8 months ago	
			i≣ README.md			

Links between observables (GMA database)

Links between observables (GMA database)

Experiments in GMA database

Experiments in GMA database

Experiments in GMA database

Definition of energy dependent USU (in a nutshell)

Definition of energy dependent USU (in a nutshell)

Statistical model with USU

Samples from posterior by Hamilton Monte Carlo

Convergence of Markov chain

Is USU present?

Impact of USU on cross section evaluation

Impact of USU on evaluated cross section uncertainty

Correlation matrix

17

Correlation matrix

How to update the covariance matrix of existing evaluation?

Multivariate normal distribution (MVN)

$$\rho(\vec{x}) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})\right)$$

$$center \ vector$$
(evaluated cross sections) covariance matrix

Evaluation process gives us consistent μ and Σ

Multivariate normal distribution (MVN)

$$\rho(\vec{x}) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})\right)$$

$$center \ vector$$
(evaluated cross sections) covariance matrix

How to change Σ if we want our evaluation be based on different μ ?

Kullback-Leibler Divergence

KL divergence for continuous distributions:

$$D_{ ext{KL}}(P \parallel Q) = \int_{\mathcal{X}} \log igg(rac{P(dx)}{Q(dx)}igg) P(dx),$$


```
Richard Leibler
```

Solomon Kullback

"Distance" between two distributions

KL divergence = 0: distributions are identical

Specialized to case of two MVN distributions:

$$D_{ ext{KL}}(\mathcal{N}_0 \parallel \mathcal{N}_1) = rac{1}{2} \left\{ ext{tr}ig(oldsymbol{\Sigma}_1^{-1} oldsymbol{\Sigma}_0 ig) + ig(oldsymbol{\mu}_1 - oldsymbol{\mu}_0 ig)^{ ext{T}} oldsymbol{\Sigma}_1^{-1} (oldsymbol{\mu}_1 - oldsymbol{\mu}_0) - k + \ln rac{|oldsymbol{\Sigma}_1|}{|oldsymbol{\Sigma}_0|}
ight\},$$

Nuclear data case

Adjust Σ_{lib} to make distributions as similar as possible measured by KL divergence

Nuclear data case

Adjust Σ_{lib} to make distributions as similar as possible measured by KL divergence

$$\boldsymbol{\Sigma}_{lib} = \boldsymbol{\Sigma}_{eval} + \vec{\mu}_{eval}\vec{\mu}_{eval}^T - \vec{\mu}_{eval}\vec{\mu}_{lib}^T - \vec{\mu}_{lib}\vec{\mu}_{eval}^T + \vec{\mu}_{lib}\vec{\mu}_{lib}^T$$

Summary and outlook

- Estimation of Pu9(n,f) covariance matrix using MCMC and incorporating the assumption of unknown energy-dependent USU uncertainties
- Evaluation performed with Python package gmapy
- (Very near-term) Plan: Adjust obtained covariance matrix using KL divergence and evaluated cross section from STD2017