Towards rigorous and reproducible uncertainty quantification in resonance evaluation

Noah Walton¹, Vladimir Sobes¹, Oleksii Zivenko¹, Jesse Brown², Jake Forbes¹, Cole Fritsch¹, Aaron Clark¹, Dave Brown³, Denise Neudecker⁴, Mike Grosskopf⁴

> The University of Tennessee¹ Oak Ridge National Laboratory² Brookhaven National Laboratory³

Los Alamos National Laboratory⁴

Two primary efforts

- 1. Develop automated tool
 - Augment evaluators

- 2. Computational experiments
 - Benchmark tool
 - Improve tool
 - Learn new physics

Methods

- SAMMY
- Robust, non-linear least squares algorithm
- Feature selection

Results

- Accurate resonance I.D.
- No spin groups (yet)

Automated Tool

Methods

- SAMMY
- Robust, non-linear least squares algorithm
- Feature selection

Results

- Accurate resonance I.D.
- No spin groups (yet)

Computational Framework – ML approach

Goal

- Benchmark at differential level
- Improve performance
- Test choices & assumptions

ML Approach

- Synthetic data
- Transmission last year
- Capture yield this year

10

This material is based upon work supported by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number DE-NA0003996.

17

Computational Framework

Developing a generative model for the resonance experiments

Developing a generative model for the resonance experiments

Developing a generative model for the resonance experiments

Leveraging AI/ML to benchmark region of automation

• Benchmarking the automation:

- 1. Quantitative assessment at differential level
- 2. Sensitivity to assumptions
 - Theoretical: parameter distributions
 - Experimental: unknown uncertainties

