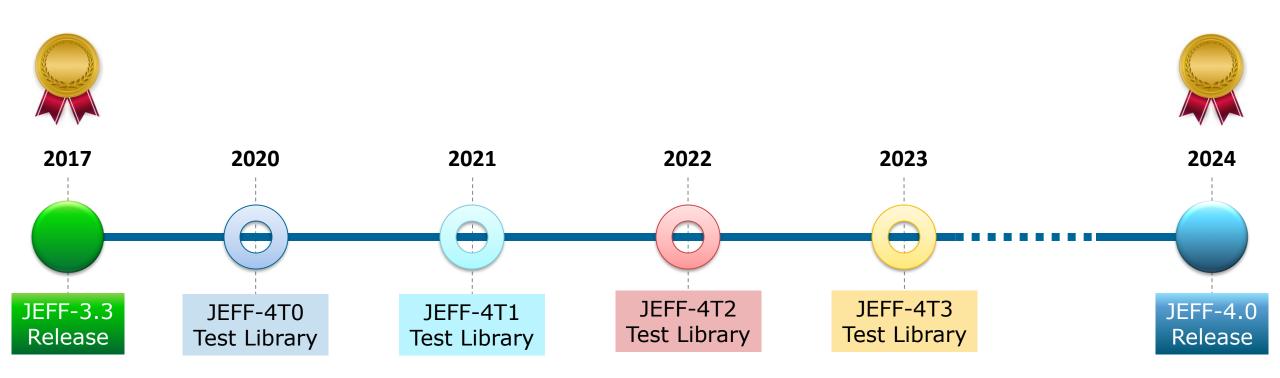


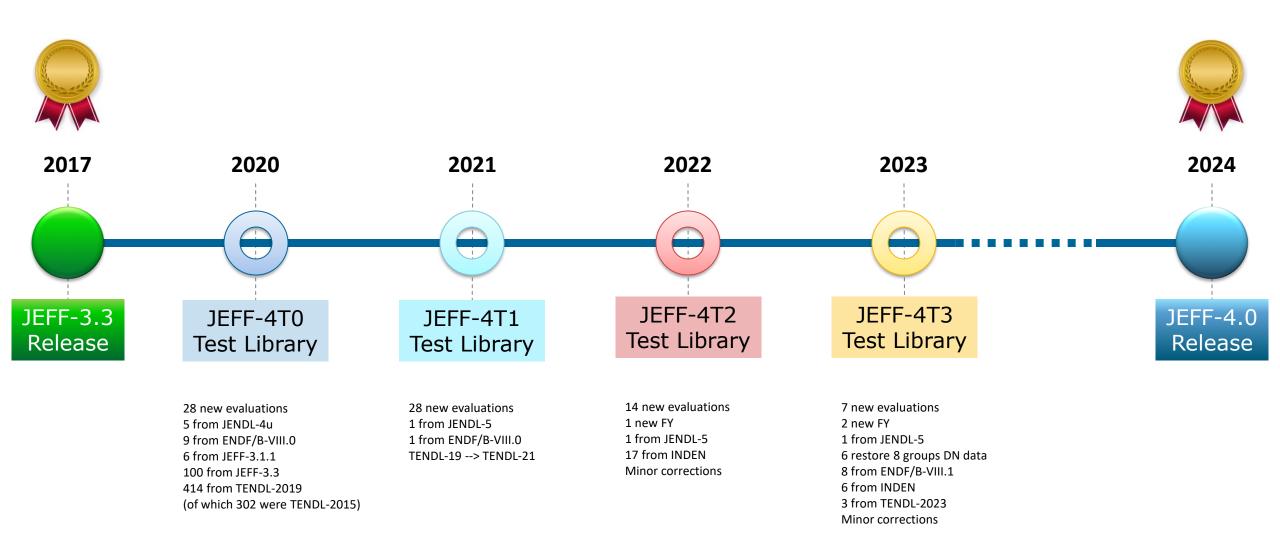
The JEFF Project Snapshot: Overview, Developments, and Status

Daniela FOLIGNO CSEWG

1) From JEFF-3.3 to JEFF-4.0



JEFF-4.0 Timeline



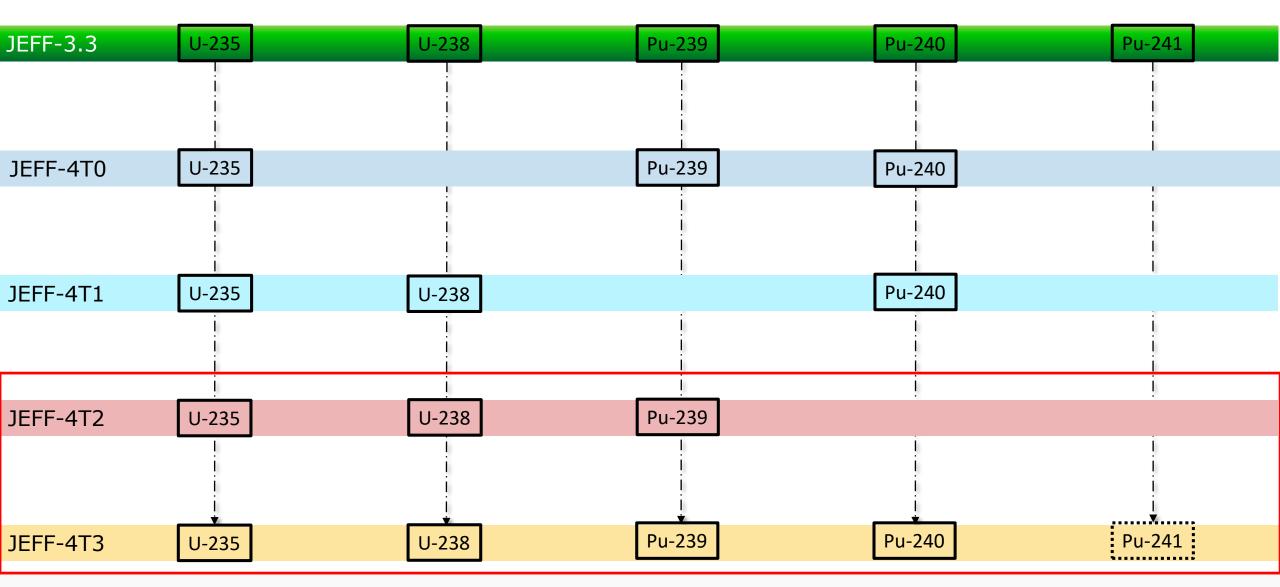
3

JEFF-4.0 Test versions

JEFF-4.0 Test versions

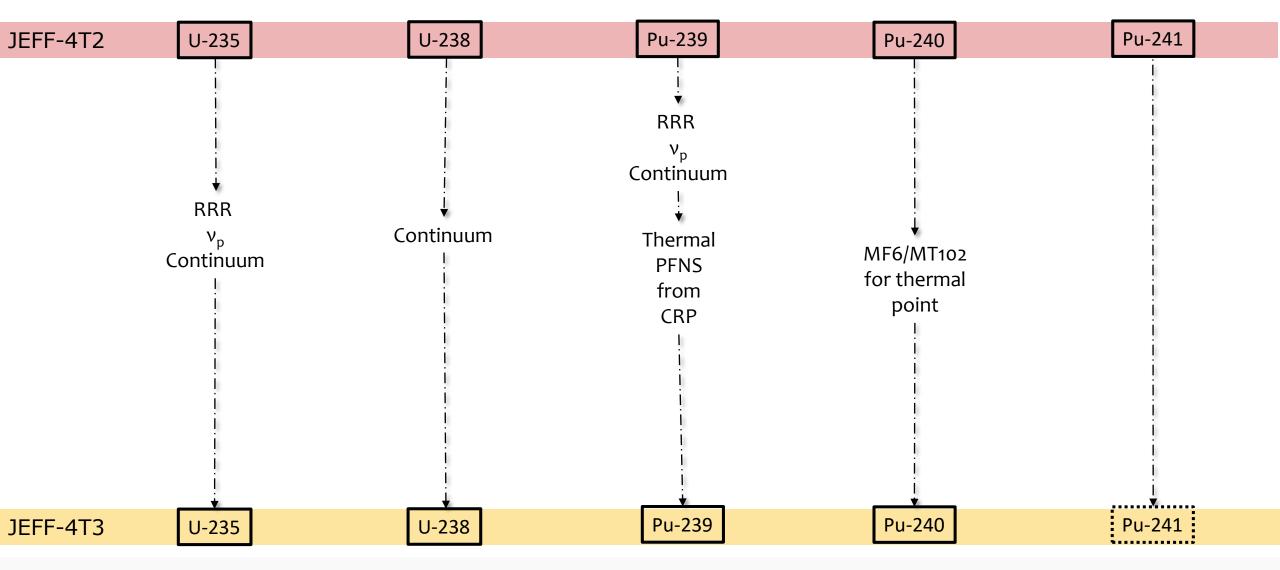
www.oecd-nea.org

JEFF-4.0 New Evaluations

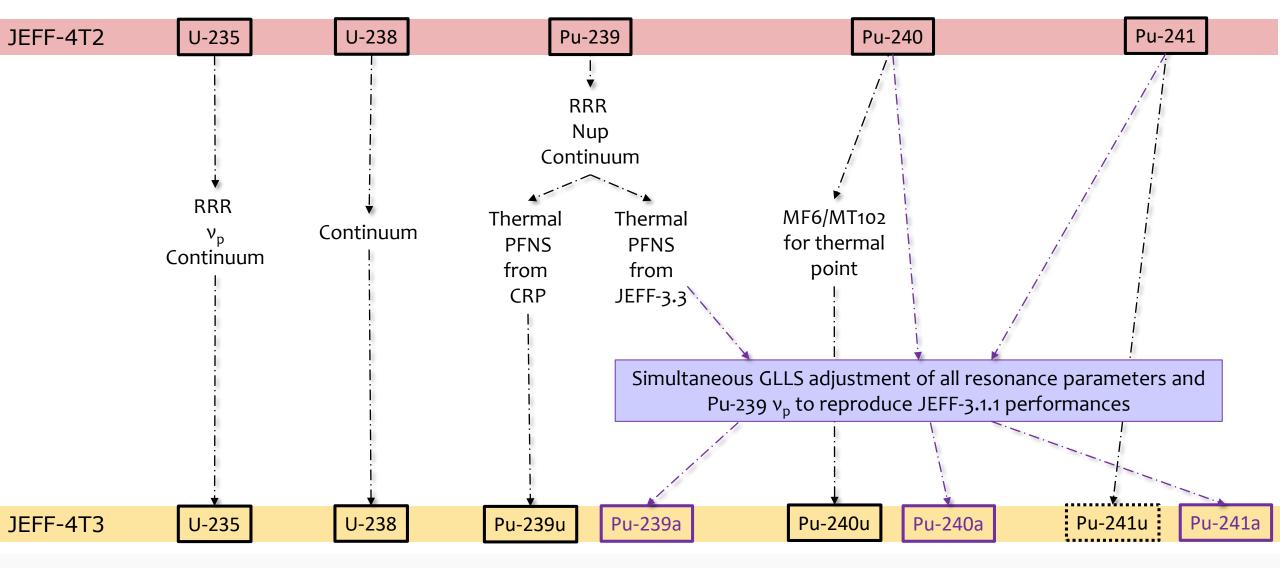

2017 JEFFF-3.3 Release	43-Tc-99	45-Rh-103	45-Rh-105	47-Ag-107	47-Ag-109		HinH2O	
	54-Xe-124	54-Xe-126	54-Xe-128	54-Xe-129	54-Xe-130		UO2	2024
	54-Xe-131	54-Xe-132	54-Xe-134	54-Xe-135	54-Xe-135m		PuO2	
	55-Cs-133	55-Cs-135	57-La-139	61-Pm-147	62-Sm-151		HinCH2	2024
	63-Eu-151	63-Eu-153	63-Eu-154	63-Eu-155	64-Gd-155		CinCH2	JEFF-4.0 Release
	64-Gd-156	64-Gd-157	64-Gd-158	64-Gd-160	69-Tm-171		HinC5O2H8	
	71-Lu-173	71-Lu-175	71-Lu-176	73-Ta-181	74-W-180		CinC5O2H8	
	74-W-182	74-W-183	74-W-184	74-W-186	76-Os-186		OinC5O2H8	
	76-Os-187	76-Os-188	83-Bi-209	92-U-235	92-U-238		HinC8H8	
	93-Np-237	94-Pu-238	94-Pu-239	94-Pu-240	94-Pu-241		CinC8H8	
		94-Pu-242	95-Am-241	95-Am-241		Ρ	rovided by OR	RNL
						-		

FYs U-235 thermalFYs Pu-239 thermal

JEFF-4.0: The Big 5


JEFF-3.3	U-235	U-238	Pu-239	Pu-240	Pu-241
JEFF-4T0	U-235		Pu-239	Pu-240	
JEFF-4T1	U-235	U-238		Pu-240	
JEFF-4T2	U-235	U-238	Pu-239	ļ.	ļ.
					ļ
JEFF-4T3	U-235	U-238	Pu-239	Pu-240	Pu-241
					•••••

JEFF-4.0: The Big 5


T2 to T3

For further information about the these evaluations, contact **gilles.noguere@cea.fr**

T2 to T3: an alternative path

For further information about the GLLS adjustment, contact **dimitri-alexandre.rochman@psi.ch**

Thermal neutron induced fission of U-235 and Pu-239

At each step of the evaluation process, correlations induced mainly by the conservation laws are given and the full variance-covariance matrix can then be determined

As data points from the experimental datasets (used for the isobaric fission yields evaluation) were not always compatible with each other, it was necessary to apply a "regularization" method

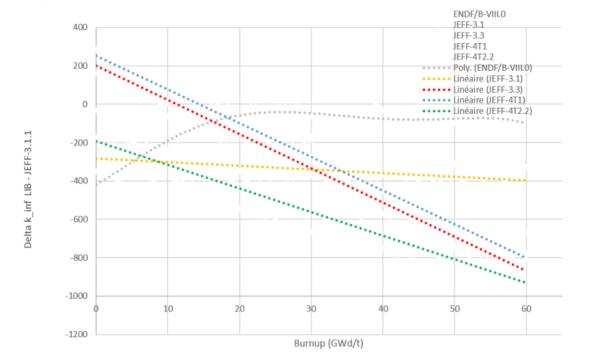
Conservative sorting (C)

All the datasets are used by adding 2.5% uncertainty to all data points, in order to make them compatible.

Strict sorting (S)

Instead of adding independent uncertainty, only consistent experiments are selected. Measurements that did not pass the tests per datasets and the tests per mass were excluded.

The main difference between the two methods is the uncertainty


For further information about the FY evaluations, contact **olivier.serot@cea.fr**

JEFF-4Tx BU issue

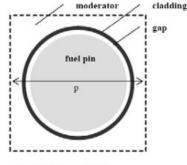
VESTA 2.2 UAM Pin cell calculation PWR UOX fuel pin Irradiated during 1 cycle BU= 61.28 GWd/tHM 2D model

Unit cell pitch (mm)	14.427
Fuel pellet diameter (mm)	9.391
Fuel pellet material	UO ₂
Fuel density (g/cm³)	10.283
Fuel enrichment (w/o)	4.85
Cladding outside diameter (mm)	10.928
Cladding thickness (mm)	0.673
Cladding material	Zircaloy-4
Cladding density (g/cm ³)	6.55
Gap material	He
Moderator material	H ₂ O

Compared to JEFF-3.1.1:

JEFF-3.3:

- BOL: +200 pcm
- EOL: -850 pcm


JEFF-4T1:

- BOL: +300 pcm
- EOL: -800 pcm

JEFF-4T2-2:

- BOL: -200 pcm
- EOL: -900 pcm

For further information about this work, contact raphaelle.ichou@irsn.fr

p – pitch of the unit cell

The strong k_inf bias with burn-up observed with JEFF-3.3 and JEFF-4.T0, JEFF-4.T1, is still present using new JEFF-4T2.2

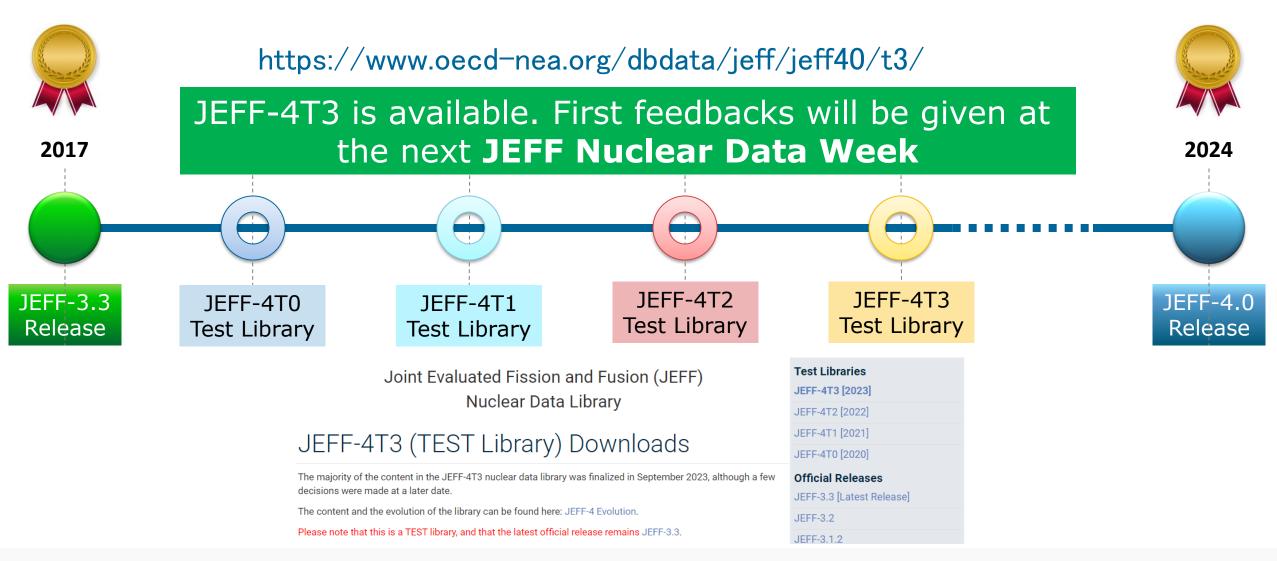
https://www.oecd-nea.org/dbdata/nds_jefdoc/jefdoc-2233.pdf

JEFF-4Tx BU issue contributions

Contribution of different isotopes at high BU:

- Low contribution of U-238
- Large impact of Pu-239
- Large contribution of Fission Products

For further information about this work, contact **oscar.cabellos@upm.es**


https://www.oecd-nea.org/dbdata/nds_jefdoc/jefdoc-2239.pdf

INDUSTRIALES

ETSII UPM

JEFF-4.0 Timeline

www.oecd-nea.org

2) Integrated, Automated, and Reproducible Nuclear Data Processing at the NEA

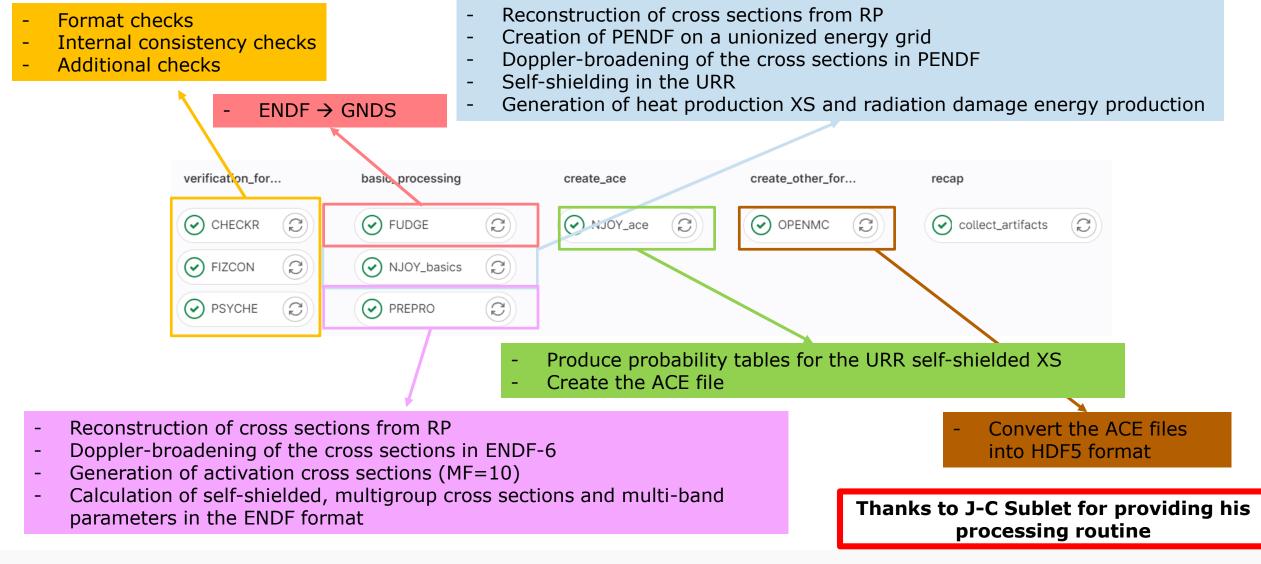
The NEA Processing pipeline

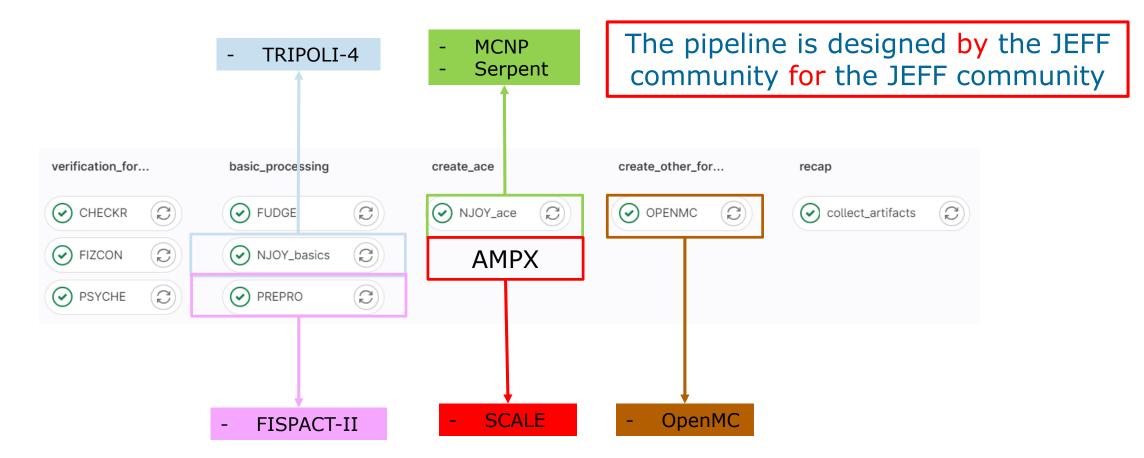
Upload ENDF-6 file

() 8 jobs for JEFF-4T2.	2 in 23 minutes and 59 seconds (qu	eued for 2 seconds)		
P latest				
- O- cd0e8c84 [℃				
\$\$ No related merge req	uests found.			
Pipeline Needs Jobs	8 Tests 0 ob dependencies			
verification_for	basic_processing	create_ace	create_other_for	recap
	FUDGE	NJOY_ace		⊘ collect_artifacts ②
FIZCON	NJOY_basics			
PSYCHE (2)	PREPRO			

The main YAML (pipeline definition) is maintained in its own repository

After every commit, the pipeline is automatically triggered

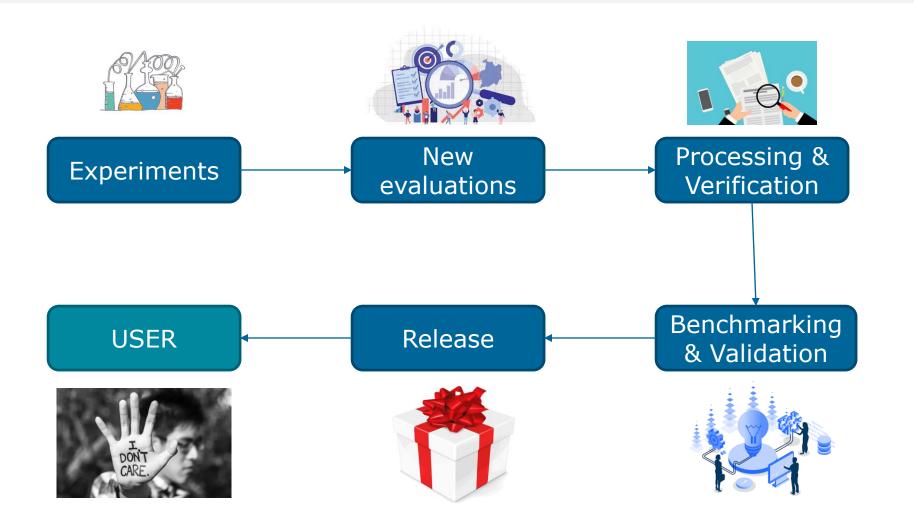

The pipeline is identical for all isotopes

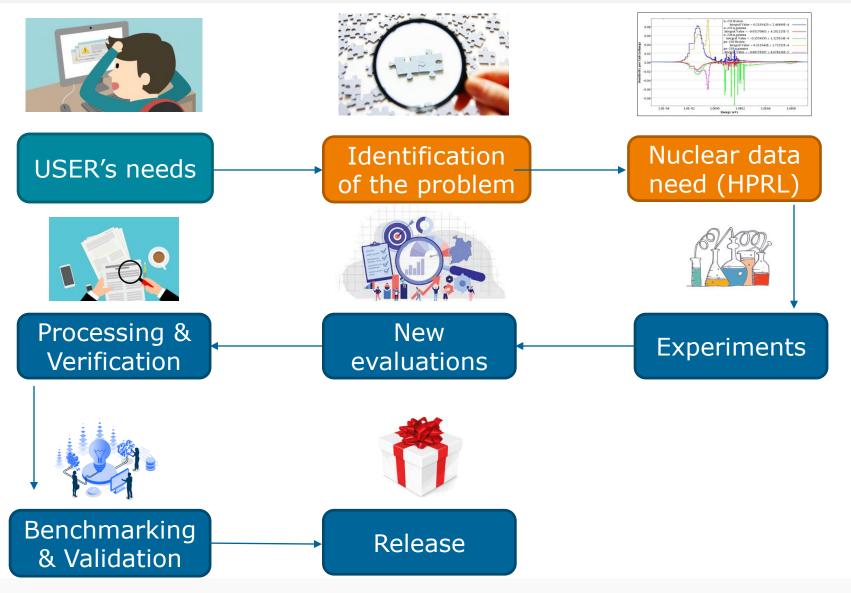

Codes are built into Docker images, stored in the Harbor, and pulled by the pipeline

www.oecd-nea.org

The NEA Processing pipeline

The NEA Processing pipeline


For further information about AMPX processing, contact **andrew.holcomb@oecd-nea.org**


3) Past and future meetings

The current ND path

An alternative possibility

www.oecd-nea.org

Stakeholder meeting

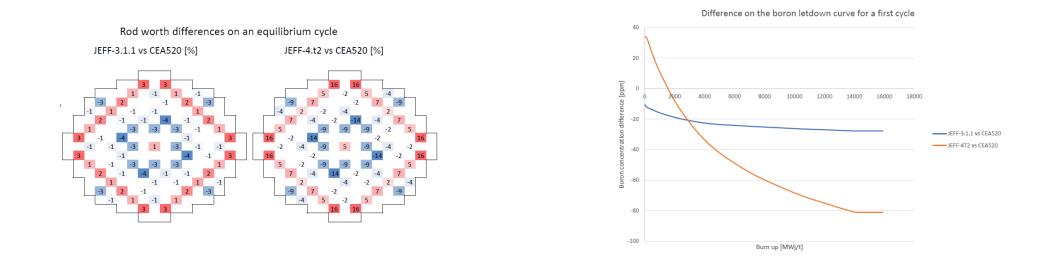
September 20th, 2023

Nuclear Physics Needs for Nuclear Energy Technology

Goal: Listen to the nuclear data needs from a great variety of stakeholders

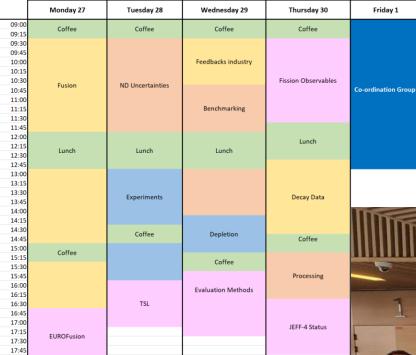
Stakeholder meeting

14 SPEAKERS 91 PARTICIPANTS 19 COUNTRIES



September 20, 2023					
Organization	Speakers	Title			
	Breakfast				
OECD/NEA	Michael FLEMING	Welcome and introduction			
EC	Arjan PLOMPEN	The JEFF nuclear data project, serving stakeholders			
CRIEPI	Yasushi NAUCHI	Gamma ray emission data for characterization of nuclear material			
CEA, IRSN	Christophe DESTOUCHES, Michael PETIT	Nuclear data for instrumentation applications			
FANC	Kevin GOVERS	Challenges and Importance of Enhanced Nuclear Data in Belgium's Nuclear Sector			
Coffee					
STUDSVIK	Teodosi SIMEONOV, Charles WEMPLE	Nuclear Data Applications in Studsvik Scandpower Analysis Codes – Past, Present, and Future			
EDF, FRAMATOME	Adrien WILLIEN, Simon EDF latest activities on nuclear data and JEFF-4T2 impact of RAVAUX simulations				
TRACTEBEL Nicolas SLOSSE		Summary of validation results using WIMS/PANTHER, highlighting the impact of the library choice (JEF-2.2 vs JEFF-3.1.2)			
		Reception (Petit Salon)			
ESS	Günter MUHRER	ESS's perspective on Nuclear Data Needs			
ORNL	Marco PIGNI	ORNL's perspective on Nuclear Data Needs			
EPRI	Hatice AKKURT	EPRI's perspective on Nuclear Data Needs			
FRAMATOME	Axel HOEFER	Nuclear data covariances in criticality safety validation			
Coffee					
NAGRA	Ahmed SHAMA	NAGRA's perspective on Nuclear Data Needs			
BAKER HUGHES	5 Andreas VOGT Nuclear Simulation Workflows and Nuclear Data Needs in Well and Geoscience				
WESTINGHOUSE	William WALTERS	Westinghouse's perspective on eVinci and LFR designs			
OECD/NEA	Daniela FOLIGNO	Closing remarks			
Cocktail reception (BB Espace Terrasse)					

Stakeholder meeting


Unexpected achievment:

Industrial feedbacks on the quality of our test library

Involvement of the industry, who engaged to give us preliminary feedbacks at every test version and a more detailed feedback before the official JEFF-4.0 release !

JEFF Nuclear Data Week

November 27th to December 1st 115 participants 57 presentations 12 sessions New session "Feedbacks from Industry"

18.00

Thank you for your attention

Please contact me (<u>daniela.foligno@oecd-nea.org</u>) if you have any questions or comments.

Generalized Linear Least-Squares Adjustment

The following quantities were adjusted:

- Pu-239: all resonance parameters up to (and including) 49.46 eV and nubar from 0 to 16 eV
- Pu-240: all resonance parameters up to (and including) 41.69 eV
- Pu-241: all resonance parameters up to (and including) 48.10 eV

During the GLLS adjustment, the following calculations were considered:

- Pincell burnup calculation (keff and Pu-239 concentration)
- Alpha ratio for Pu-239
- PST benchmarks (1, 4, 5, 6, 7, 9, 12, 34, 38)
- Kritz benchmark (LWR-RESR-001, case 1 and 2)
- Thermal standard values (fission, capture) for Pu-239 and Pu-240

The goal was to reproduce the performances of JEFF-3.1.1.

It was additionally checked with the DUKE-PWR-POWER-001 from IRPhE

For further questions, ask S. van der Marck (NRG), M. Hursin (EPFL), and D. Rochman (PSI)