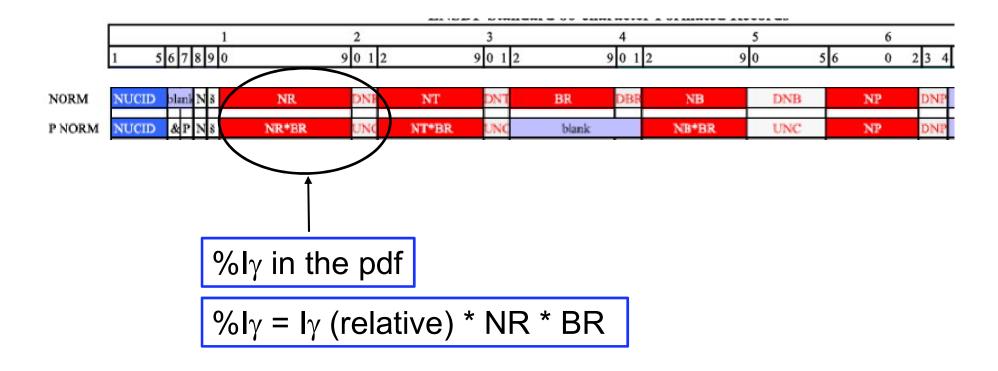


Missing %lγ uncertainty in the ENSDF

M. Shamsuzzoha Basunia


USNDP meeting, BNL, 13-15 Nov, 2023

Background – decay data normalization

- ☐ There are several methods to normalize the decay data
 - > From measured emission probabilities:
 - a) P_γ
 - b) P_{β} or P_{β} other than the g.s.
 - c) From relative I_{γ} and known P_{γ} of one of the pair in transient or secular equilibrium
 - Direct g.s. beta feeding is known
 - > Annihilation radiation intensity is known
 - x-ray intensity is known
 - > x-ray γ-ray coincidence intensity is measured

NORM and P NORM cards

If ΔI (often for $I\gamma$ =100) and ΔNR and ΔBR (for 100%) are missing, then $\% I\gamma$ yields no uncertainty

An example:

⁹⁵Rh ε decay (5.02 min) 1981Gr20,1979Zy03,1975We03

Parent: ⁹⁵Rh: E=0.0;
$$J^{\pi}$$
=9/2⁺; $T_{1/2}$ =5.02 min 10; $Q(\varepsilon)$ =5112 12; $\%\varepsilon + \%\beta^+$ decay=100.0 $\gamma(^{95}\text{Ru})$

Iy normalization: From ΣI_{γ} (to g.s.)=100, assuming no g.s. to g.s. feeding.

Eγ [†]	$I_{\gamma}^{\dagger e}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	α
895.0° 3 906.9 3	2.4 2 0.85 9	2246.9 2258.80	11/2 ⁺ (9/2,11/2) ⁺	1352.00 1352.00			
941.6 3	100	941.70	7/2 ⁽⁺⁾	0.0	5/2 ⁺		

^e For absolute intensity per 100 decays, multiply by 0.67817.

%
$$I_{\gamma}(941.6) = I_{\gamma} \text{ (relative) * NR * BR}$$

= 100 * 0.67817 * 1
= 67.817 (no uncertainty)

Similar case in ⁹⁷Ru EC decay for %l_γ(215.7)

Observations and thoughts:

- ☐ I have searched the database:
 - Dozen of cases need to be checked
- ☐ Important to fix the datasets
 - Otherwise takes much longer by mass chain
 - And there is a chance of missing again
- ☐ If time permits can we devote some time during the upcoming NSDD to fcheck/fix a few of those the datasets (12 or so)
 - Benefits:
 - Corresponding centers can check their datasets
 - Brings awareness of the case useful both for the evaluator and reviewer
 - Joy of doing things together

