

## K forbiddenness in beta decay

F.G. Kondev Physics Division, Argonne National Laboratory





USNDP meeting, November 13-15, 2023, BNL

# K quantum number & deformation





S.G. Nilsson, Dan. Mat. Fys. Medd. 29 (16) (1955)

### deformed nuclei - Nilsson model: $\Omega^{\pi}[Nn_{z}\Lambda]$ ; $\Lambda=\Omega \pm 1/2$

G. Alaga, K. Alder, A. Bohr, B.R. Mottelson, Mat. Phys. Medd. Dan. Vid. Selsk. 29, 9 (1955)
G. Alaga, Phys. Rev. 100 (1955) 432

⇒ each nuclear level in well-deformed nuclei has E, T<sub>1/2</sub>, L, S , J<sup>π</sup>, and K<sup>π</sup>(Ω<sup>π</sup>) ⇒ in most case the band-head (the lowest state) has J=K, BUT ...

- due to decoupling & Coriolis interactions -> J=5/2-, K=1/2- for 1/2[541] (h<sub>9/2</sub>)
- due to residual proton-neutron interactions -> J=1<sup>-</sup>, K=0<sup>-</sup> for isomer in <sup>176</sup>Lu

## K-hindered decays & K isomers



$$1/\tau \sim \mathbf{E}_{\gamma} \,^{2\lambda+1} \mid \leq \psi_{f} \mid T \mid \psi_{i} \geq \mid^{2}$$

✓ hindrance  $F_w = \tau_\gamma / \tau_W$ ✓ reduced hindrance  $f_v = F_w^{1/v}$ 

It ransition of multipolarity  $\lambda$  can only change the K projection by at most  $\lambda$ .

✓ the shortfall is the degree of "forbiddenness"  $v = \Delta K - \lambda$ . typically  $f_v = 20 - 300$ , but many exceptions... because of K mixing





 ${\cal K}$  isomers in atomic nuclei

P.M. Walker<sup>1</sup> and F.G. Kondev<sup>2</sup>

<sup>1</sup>Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom. <sup>2</sup>Physics Division, Argonne National Laboratory, Lemont, 60439, Illinois, USA. Det Kongelige Danske Videnskabernes Selskab

Matematisk-fysiske Meddelelser, bind 29, nr. 9

Dan. Mat. Fys. Medd. 29, no. 9 (1955)

G. ALAGA, K. ALDER, A. BOHR, AND B. R. MOTTELSON

Matematisk-fysiske Skrifter <sup>udgivet af</sup> Det Kongelige Danske Videnskabernes Selskab Bind **1,** nr. 8

Mat. Fys. Skr. Dan. Vid. Selsk. 1, no. 8 (1959)

BEN R. MOTTELSON AND SVEN GÖSTA NILSSON

#### INTRINSIC EXCITATIONS OF NUCLEI WITH STABLE EQUILIBRIUM DEFORMATION

C. J. GALLAGHER Physics Department, Columbia University, New York

Eur. Phys. J. A **39**, 101–106 (2009) DOI 10.1140/epja/i2008-10687-1 The European Physical Journal A

Regular Article – Theoretical Physics

#### K-forbidden allowed $\beta$ transitions in heavy nuclei

P.C. Sood<sup>1,a</sup>, O.S.K.S. Sastri<sup>2</sup>, and R.K. Jain<sup>2</sup>

**IOP** Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 44 (2017) 065101 (8pp)

https://doi.org/10.1088/1361-6471/aa65f0

## K-hindered beta and gamma transition rates in deformed nuclei and the halflife of $^{180}$ Ta<sup>m</sup>

 $B_{if} \simeq \frac{\left|M_{if}\right|^{2}}{2J_{i}+1} = Const \frac{I_{\beta_{if}}}{f(\mathbf{Z}, Q_{\beta} - E_{f}) \times T_{1/2}} = Const \frac{1}{ft}$ 

 $\Rightarrow \beta$ -decay spectra are not discrete

•  $I_{\beta}$  are not directly measured



discrete γ-ray spectroscopy





total absorption γ-ray spectroscopy (TAGS)

H Ejiri and T Shima



176

**π7/2<sup>+</sup>[404] v7/2<sup>-</sup>[514]** 



 $\Delta E_{GM}^{pn} = E_{K_H}^{pn} - E_{K_I}^{pn} =$ C.J. Gallagher and S.A. Moszkowski, Phys. Rev. 111 (1958) 1282  $< K_{H}|V^{pn}|K_{H}> - < K_{L}|V^{pn}|K_{L}>$ 236.9 0,0  $B_N = \langle K = 0 | V^{pn} | K = 0 \rangle$  $\left|\Omega_n - \Omega_p\right|$ 2B<sub>N</sub>=+114 кеV N.D. Newby, Phys. Rev. 125 (1962) 2036 122.9 1,0  $\Delta E_{GM}^{pn}$ 3.664 н  $\frac{ft (1^- \to 2^+)}{ft (1^- \to 0^+)} = - \left[ \frac{\left(\frac{\langle 1010|00\rangle}{\langle 1010|20\rangle}\right)^2 = 0.5 \text{ K=0}}{\left(\frac{\langle 111-1|00\rangle}{\langle 111-1|20\rangle}\right)^2 = 2.0 \text{ K=1}} \right]$ 7,7 0.0  $|\Omega_n + \Omega_n|^{-3.7 \times 10^{10} \text{ y}}$ 2+,0+ 88.3 60(4)%  $0^{+}, 0^{+}$ 0.0 40(4)%  $\frac{ft \ (1^- \to 2^+)}{ft \ (1^- \to 0^+)} \text{EXP} \sim 0.56$ 176**Hf** 

I.Rezanka et al., Izvest. Akad. Nauk SSSR, Ser. Fiz. 26, 127 (1962)







## Quantifying the K forbiddenness



P.M. Walker & F.G. Kondev, Eur. Phys. J., in press

### Spin-trap isomers in deformed odd-odd nuclei



⇒ high Ω orbitals near both the proton & neutron Fermi levels



- $\Delta$ I=0, +/-1 but also  $\Delta$ K=0, +/-1
- related structure Alaga: Ah or Au
- $\Rightarrow$  distinctive  $\gamma$ -ray decay pattern
- ⇒ different beta-decay half-lives

• 
$$\frac{1}{\tau_{\beta}} \propto (Q_{\beta} - E_f)^5$$



### PHYSICAL REVIEW C 103, 035803 (2021)

### $\beta$ -decay feeding intensity distributions for <sup>103,104m</sup>Nb

J. Gombas<sup>®</sup>,<sup>1,2,\*</sup> P. A. DeYoung<sup>®</sup>,<sup>1,†</sup> A. Spyrou,<sup>2,3,4,‡</sup> A. C. Dombos,<sup>2,3,4</sup> A. Algora<sup>®</sup>,<sup>5,6</sup> T. Baumann<sup>®</sup>,<sup>3</sup> B. Crider<sup>®</sup>,<sup>3</sup> J. Engel<sup>®</sup>,<sup>7</sup> T. Ginter,<sup>3</sup> E. Kwan,<sup>3</sup> S. N. Liddick,<sup>3,4,8</sup> S. Lyons<sup>®</sup>,<sup>3,4,§</sup> F. Naqvi,<sup>3,4</sup> E. M. Ney<sup>®</sup>,<sup>7</sup> J. Pereira,<sup>3,4</sup> C. Prokop,<sup>3,8</sup> W. Ong,<sup>3,2,4</sup> S. Quinn,<sup>2,3,4</sup> D. P. Scriven<sup>®</sup>,<sup>2</sup> A. Simon,<sup>9</sup> and C. Sumithrarachchi<sup>3</sup>



### Ground-state and decay properties of neutron-rich <sup>106</sup>Nb

