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The Gaerttner LINAC Center

Outline
• Neutron capture in 54Fe (S. Singh)

• Neutron capture yield and γ-ray cascade spectra measurements (K. Cook)

• Thermal neutron die-away measurements (B. Wang)

• URR improvement to SAMMY (A. Golas)



3

The Gaerttner LINAC Center

Neutron capture in 54Fe
S. Singh
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Overview and Project Goals
• Motivation:

– Minor isotopes of Fe have a need for new nuclear data.
– Fe is shown to be very important in criticality safety applications.

• Project Goals:
– Perform radiative capture and transmission measurements using existing RPI infrastructure.
– Generate IDCs for RPI experimental data for use in evaluation.
– Perform RRR evaluation for 54Fe using existing nuclear data on EXFOR and RPI measurements.
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Overview of Transmission Results
• Transmission is less sensitive to changes in evaluations.

– Covariance passes all mathematical checks.

• Small correlations are present in the transmission experiment. 
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54Fe (n,γ) Measurement - Motivation
• Fe is an important constituent in many nuclear systems
• Natural Fe and 56Fe cross sections have been studied extensively, but there is a lack of data available in 

EXFOR of the 54Fe(n,𝛾𝛾) cross section
• There are various discrepancies between different evaluated data libraries, where some resonances are 

present in one evaluation and not the other
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Overview of Capture Results

• Capture yield shows large discrepancies.
• Stronger correlations between resonances are 

present in the experiment.
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Effect of IDCs on Resonance Parameter Fits
Work thus far shows insensitivity of resonance parameters and uncertainties to the inclusion 
of correlations in time-of-flight experiments on Bayesian fitting.
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Future Work for 54Fe

• Publish measurements of Fe to EXFOR and journal w/ experimental 
covariances. (November 2023)

• Complete RRR evaluation using RPI and EXFOR data w/ and w/o IDCs 
when available. (March 2024)

• Using SAMMY to fit nuclear data w/ IDCs is relatively unexplored.
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Neutron capture yield and γ-ray cascade 
spectra measurements

K. Cook
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RPI Capture γ-Ray Multiplicity Detector

• 16 segment NaI(Tl) γ-ray multiplicity 
detector
– Total volume: 20 L of NaI(Tl) surrounding the sample
– Inside of the detector is lined (~1 cm) with a B4C 

ceramic sleeve which is enriched 99.5 atom% in 10B to 
absorb scattered neutrons from the sample

– Up to 96% efficiency for detecting γ-ray cascades
– Located 25 m from the neutron-producing tantalum 

target

• Used for neutron capture yield and γ-ray 
spectra measurements 
– Incident neutron energies: 0.01 eV – 3 keV

• 16 Channel 250 MHz 14-bit Digitizer 
(SIS3316-250-14)
– Digitize pulses generated for each event on all 16 

detectors to determine the energy deposited in each 
detected event
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Nuclear Data Validation Methodology 
Compare Experimental Data to Simulated γ-Ray Spectra

mod-MCNP-6.2 Simulated 
Results

Nuclear Data Evaluation from
ENDF/B-VIII.0, DICEBOX 

(ENSDF + RIPL-3) or other sources 

γ-ray cascades, Probability 
Distributions, etc…

Processing Code

Compare various results:
‐ Neutron capture γ-ray spectra
‐ γ-ray cascade multiplicity spectra
‐ Angular distributions of γ-rays
‐ Total γ-ray energy deposition

Experimental 
Parameters

Experimental 
Data

Experiment
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DICEBOX
Models full γ-ray cascades 

using evaluated nuclear data 
(ENSDF + RIPL-3)

EGAF
Shows experimentally 
measured γ-ray lines 

(does not necessarily represent 
the full cascade)

DICEBOX input tuned to R. B. Firestone et. al., Phys. Rev. C 95, 014328 (2017) data

Generating Capture γ-Ray Cascades
for mod-MCNP-6.2/DICEBOX Simulation

56Fe(n,γ), En = thermal
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56Fe(n,γ) spectra 
Compared to mod-MCNP-6.2/DICEBOX Simulation
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Additional 
Measured 
Neutron 
Capture 
Spectra 

Compared to 
mod-MCNP-

6.2/DICEBOX 
Simulations
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Conclusions
• The experimental, simulation and nuclear data methods were validated for the RPI 

Capture γ-Ray Multiplicity Detector

• When the neutron capture γ-ray cascade data is well-known, the experimental γ-ray 
emission spectra can be accurately simulated using the modified simulation tools

• Complete analysis for measured isotopes: 55Mn, 59Co, 181Ta, 238U, and 235U

• New FY23 NDIAWG FOA award (RPI/NNL/BNL): Development of 
Benchmark Measurements for Capture γ-Ray Cascades
• Continue this work by using the data and methods to develop benchmarks for neutron induced capture 
γ-ray cascade nuclear data

Future Work
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Thermal neutron die-away 
measurements

B. Wang
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Motivation & Initial Setup
• Provide a low-cost experiment to validate the preference of Thermal Scattering Libraries (TSL).
• Use a DT source to pulse a moderator material and measure the thermal leakage
• Compare to (MCNP) simulations.

DT source

He-3 Detector

Cd Shield

Water Sample
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Preliminary Results

Initial water test results
• 3 different sample sizes
• Proof of concept for PNDA experiments

Low temperature measurements of Polyethylene 
• Low temperate polyethylene moderator target
• Test PNDA temperature sensitivity
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PNDA Design Full Assembly
• Room decoupler is 30% borated poly, no liner
• Digital integrated DAQ system from Queasta
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Improvements in SAMMY 
URR analysis

A. Golas
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Self-Shielding Workflow

Transmission
Measurement

𝜎𝜎𝑡𝑡

ENDF Library
Resonance
Parameters

SESH
Corrected 𝜎𝜎𝑡𝑡

Have resonance
parameters converged?

SAMMY

New
Resonance
Parameters

No

Yes

Done!

• This is primarily converting data from one 
format to another in an iterative process

• External loop
• Very tedious and time consuming
• Prone to user error
• Evaluators have better things to do…
• Very few evaluators are familiar with fitting 

URR

Goal is to automate this 
process into a single step
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Fitting Transmission with SAMMY
• In order to fit with SAMMY two quantities 

need to be calculated:
1. The average transmission to be fitted to the 

experiment

𝑇𝑇 𝑢𝑢 = 𝐶𝐶𝑇𝑇 𝑢𝑢 𝑒𝑒−𝑛𝑛 ⟨𝜎𝜎 𝑢𝑢 ⟩

2. The derivative of the theoretical transmission 

needed for the fit procedure

𝜕𝜕 𝑇𝑇 𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝑒𝑒−𝑛𝑛 𝜎𝜎 𝜕𝜕𝐶𝐶𝑇𝑇
𝜕𝜕𝜕𝜕

− 𝑛𝑛𝐶𝐶𝑇𝑇
𝜕𝜕 𝜎𝜎
𝜕𝜕𝜕𝜕

• 𝑢𝑢 can be any URR parameter (𝑆𝑆ℓ, Γ𝛾𝛾, 𝑅𝑅∞)

• 𝐶𝐶𝑇𝑇 𝑢𝑢  is the self shielding correction factor

• 𝜕𝜕 𝜎𝜎
𝜕𝜕𝜕𝜕

 is already provided in FITACS for all given 

parameters.

• 𝜕𝜕𝐶𝐶𝑇𝑇
𝜕𝜕𝜕𝜕

 does not have any sort of analytical form and 

must be estimated numerically
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Verifying Transmission Fitting
• Actual fits are very similar
• Error while enabling 𝜕𝜕𝐶𝐶𝑇𝑇

𝜕𝜕𝜕𝜕
 calculation is 

marginally better than disabling derivative
• 𝜕𝜕𝐶𝐶𝑇𝑇

𝜕𝜕𝜕𝜕
 calculation is currently disabled in 

SAMMY until a testing suite is developed

Ta-181 Fitting Results (Strength Functions *1e-4)

𝝏𝝏𝑪𝑪𝑻𝑻
𝝏𝝏𝝏𝝏

=ON 𝝏𝝏𝑪𝑪𝑻𝑻
𝝏𝝏𝝏𝝏

=OFF ENDF-8.1

𝑆𝑆0 1.807 1.7517 1.740

𝑆𝑆1 0.620 0.7511 0.800

𝑆𝑆2 1.486 1.4986 1.690

𝜒𝜒2/𝑁𝑁 1.981 2.444 -
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Workshop on Elastic and Inelastic Neutron Scattering (WINS-2023)
October 10-12, 2023

• Hosted at RPI in NES building and included a tour of the LINAC
• International meeting postponed due to COVID from 2020 to this year.
• About 35 attendees from different laboratories

– Brookhaven National Laboratory
– Helmholtz-Zentrum Dresden Rossendoff, Germany
– IRMM, Belgium 
– Horia Hulubei National Institute Romania, CNRS/IPHC, Strasbourg
– US Naval Academy
– Los Alamos National Laboratory
– Naval Nuclear Laboratory (NNL)

• About 21 presentation
– 7 talks form this group.

• Sponsored by RPI and NNL
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Summary
• New capture and transmission measurements for 54Fe will help improve resonance parameter 

evaluation

• Neutron capture γ-ray cascade spectra and yields were measured in the resolved resonance region and 
compared to evaluations using mod-MCNP-6.2/DICEBOX simulations
– Helps assess current nuclear structure data
– mod-MCNP6.2 event-by-event simulation techniques were developed
– Work under the FY23 NDIAWG FOA will further develop the nuclear data and simulation methods to 

provide benchmarks for neutron induced capture γ-ray cascades

• Pulsed neutron die-away method was developed as a tool to provide data for validation of TSLs

• New feature in SAMMY will enable fitting of neutron transmission and capture yield in the URR
– Embedding self-shielding code SHESH in SAMMY
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