

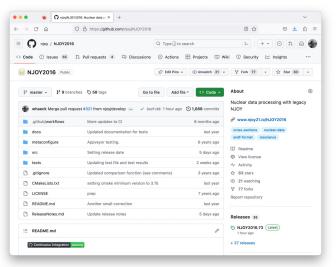
Current status of NJOY for ENDF/B-VIII.1

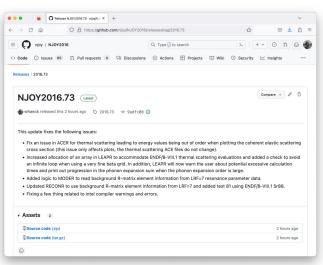
W. Haeck, A.C. Kahler

CSEWG, November 15 – November 18, 2023

Outline

- Updates to NJOY2016 related to ENDF/B-VIII.1
 - MF7 MT451
 - Background R-matrix elements
 - Other notable changes
- Update on the NJOY modernisation
 - ENDFtk, ACEtk
 - scion


Our main objective: smooth processing of ENDF/B-VIII.1


- Every new ENDF/B generation changes formats and adds new data
- The future library: ENDF/B-VIII.1 (somewhere in 2024)
 - Mixed mode thermal scattering (coherent and incoherent elastic scattering)
 - Improved photonuclear data
 - Thermal scattering information in MF7 MT451
 - Background R-matrix elements for resonance parameters in MF2 MT151
- NJOY2016 should be able to handle or at the very least be able to read these
 - New features that require changes in MCNP have been prioritised
 - As a result, MCNP6.3 already supports these new ENDF/B-VIII.1 features

Maintaining our production version

Get it at https://github.com/njoy/NJOY2016

- Latest version is NJOY2016.73 (November 2023)
 - We aim to release updates every three months even if the changes are minor
 - This coincides with quarterly reports that we give to our funding sources

Thermal scattering information in MF7 MT451

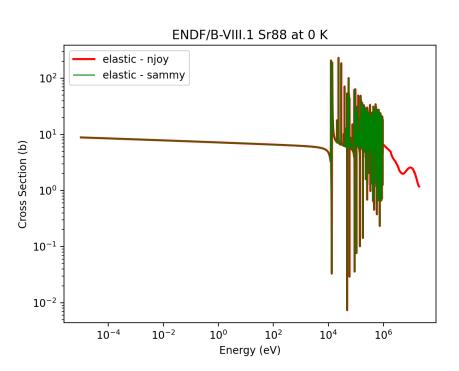
- MF7 MT451 was approved as a format option this year
 - It provides composition and other relevant data on the molecule or crystal unit cell
 - A number of LIST elements per element
 - Each list gives isotopes, isomeric state, abundance, AWR and cross section values
- NJOY2016 does not use this data but can handle its presence in an ENDF file
 - Modifications were made to MODER only
 - We will make use of this in a modernised version of NJOY
- NJOY2016.71 (July 2023) is required when MF7 MT451 is present

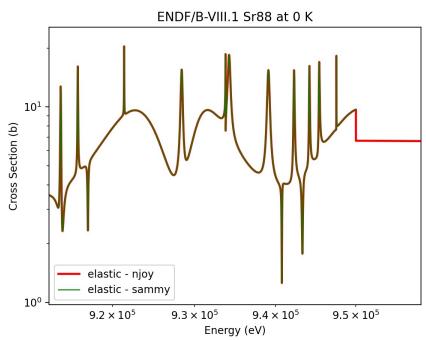
Background R-matrix elements in MF2 MT151

- MF2 MT151 changes were approved in 2021
 - Background R-matrix elements have been in the ENDF manual for a long time
 - The format description had errors in it that were fixed
- Multiple options are available:
 - No background
 - Arbitrarily tabulated complex function

$$R_{cc'} = \left[\sum_{\lambda} \frac{\gamma_{\lambda c} \, \gamma_{\lambda c'}}{E_{\lambda} - E - i \, \Gamma_{\lambda \gamma} / 2} + R_c^{\text{bkg}} \, \delta_{cc'} \right] \delta_{JJ'}. \tag{D.76}$$

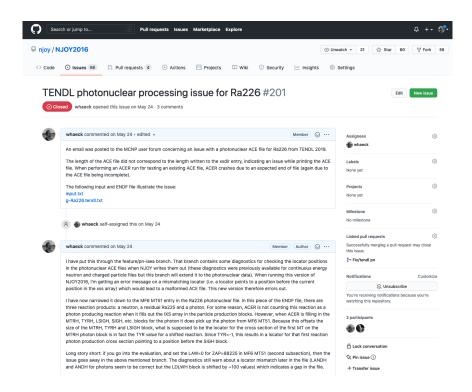
- SAMMY parametrisation
- Frohner parametrisation
- An ORNL Sr88 evaluation now uses the SAMMY parametrisation option
- NJOY2016.73 (November 2023) is required for background R-matrix elements




Background R-matrix elements in MF2 MT151

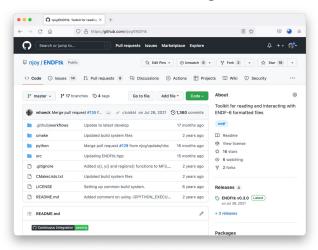
- Changes were required in the following NJOY2016 modules:
 - MODER:
 - read over the background R-matrix element information
 - RECONR:
 - Add a few requirement tests to protect against NJOY2016 limitations
 - Background R-matrix elements are only allowed in LRF=7, KRM=3 (Reich-Moore)
 - NJOY2016 does not handle reduced resonance widths (IFG=1)
 - Add the background R-matrix element to the R-matrix
 - All options are supported although we only tested the SAMMY parametrisation
 - ERRORR:
 - Add derivatives to the background R-matrix elements
 - This currently only supports the SAMMY parametrisation and is untested
- This new capability was tested in collaboration with ORNL

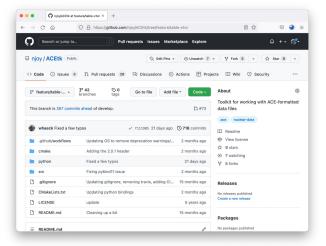
Background R-matrix elements in MF2 MT151


Other noteworthy updates to NJOY2016

- NJOY2016.70:
 - Primarily fixes in HEATR that may lead to differences with previous versions
- NJOY2016.72:
 - ERRORR now allows for the selection of the MF34 sub-subsection to be calculated
 - By default, the L=1,L1=1 sub-subsection will be calculated which in almost all cases will correspond to the first sub-subsection in the MF34 data
- NJOY2016.73:
 - Fixes in LEAPR to properly run some of the input files used for the ENDF/B-VIII thermal scattering files

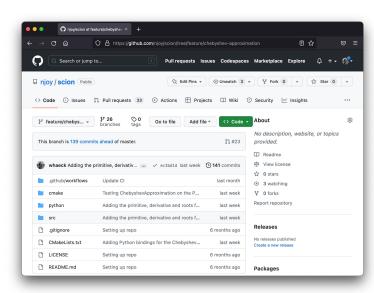
When you see something, say something


- We try to fix issues in NJOY2016 as soon as they become apparent
 - Sr88 R-matrix background elements
 - LEAPR input files segfaulting
 - IAEA updates



So what about the NJOY modernisation?

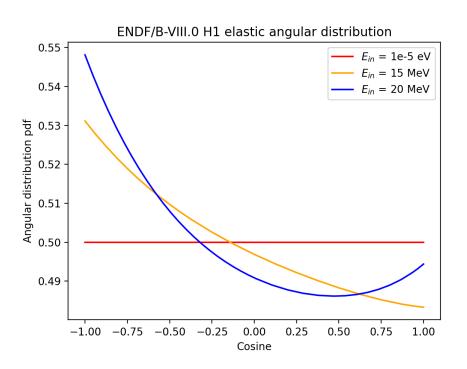
- NJOY21: shift from a module based to a component based modernisation
 - Modernised modules are built from components
 - Components provide formats (e.g. ENDF, ACE, GNDS) or processing operations (e.g. scion)
 - Components can be developed and deployed faster than modules
 - Using a C++ and Python API at the same time
 - Regular releases with testing and validation

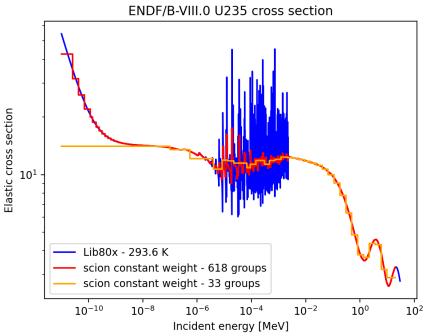

ENDFtk and ACEtk development is almost completed

- ENDFtk: https://github.com/njoy/ENDFtk
 - ENDFtk v0.5.0: now with full ENDF compatibility
- ACEtk: https://github.com/njoy/ACEtk
 - ACEtk v0.1.0:
 - Incident neutron and charged particle ACE files
 - Photoatomic (including eprdata files) and photonuclear ACE files
 - Thermal scattering ACE files
 - Dosimetry ACE files
- Look out for v1.0 releases of both toolkits soon!
 - Updating cmake build systems and unit test framework update
 - Add an installation option
 - Updating dependencies

So we can read and write data, now what?

- Most NJOY modules need to perform a common set of operations:
 - Interpretation of various data representations (tables, analytical functions, etc.)
 - Linearisation of various data representations
 - Unionisation of data on a common energy grid, etc.
 - Differentiation and integration of the data
- This will be the job of SCION
 - SCientific interpretatION, linearisatION, differentiatION, integratION and more IONs
 - It will provide a format agnostic data interface




Current capabilities in SCION

- Functional interpretation of tabulated data using various interpolation schemes
- Functional interpretation of polynomial based expansions
 - Normal power series, Legendre series and Chebyshev series
 - Root finding for the general case f(x) = a using the companion matrix
 - Integration and differentiation can be performed using a functional interface
- Generic linearisation of functions
 - Extensible interface for convergence and panel splitting
- Common mathematical capabilities
 - Horner and Clenshaw recursion for polynomial evaluation
 - Newton-Raphson for root finding
 - Special mathematical functions

Current capabilities in SCION

Our focus for next year

- Continue maintenance of NJOY2016 with respect to ENDF/B-VIII.1
 - This includes updating the NJOY2016 dependency in NJOY21 for those who use it
- NJOY modernisation:
 - Covariance related work (codex)
 - Resonance reconstruction overhaul
 - Processing the latest EPICS data into eprdata files for MCNP

