

Evaluation updates for ⁹Be and charged particles

CSEWG M. Paris, G. Hale & Mike Herman (LANL/T-2) N. Gibson, S. Kahler, N. Kleedtke & D. Neudecker (LANL/XCP-5)

2023-11-16

LA-UR-23-XXXXX

Outline

- •Evaluation updates for ENDF/B-VIII.1 β 2
 - -n+9Be
 - -Charged particle sublibraries

⁹Be

n+9Be evaluation summary

n+⁹Be *R-matrix configuration*

	Cha	nnel		$a_c(\mathrm{fm})$		ℓ_{\max}	
	$n+^9$	$\operatorname{Be}(\frac{3}{2}^{-})$		4.67		3	
	⁴ He	$+^{6}\tilde{H}e(0^{+})$		5.00		4	
	(nn	$)_0 + {}^8\text{Be}(2^+)$		5.20		3	
	n +	${}^{9}\text{Be}^{*}(\frac{5}{2}^{-})$		5.20		1	
	γ +	$^{10}\mathrm{Be}$		50.0		3	
Process			E_n range	Obse	ervables	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$
$^{9}\text{Be}(n, n_0)^{9}$	Be	(1.25 eV)	, 15.4 MeV)	$\sigma_{ m tot},\sigma,\sigma$	$\sigma(\theta), A_y(\theta)$	5782	1.65
$ {}^{9}\text{Be}(n, {}^{4}\text{He})^{6}$	He	(0.6)	3, 8.5) MeV	σ_{i}	$,\sigma(heta)$	178	1.40
${}^{9}\mathrm{Be}(n,2n)^{8}$	Be	(1.8	, 14.7) MeV		σ	40	13.95
${}^{9}\text{Be}(n,n_{1}){}^{9}\text{H}$	Be*	(2.	7, 5.0) MeV	($\sigma(heta)$	83	1.65
$^{9}\mathrm{Be}(n,\gamma)^{10}$	Be	(.0253	eV, .6 keV)		σ	11	1.90
Total						6094	1.75

- Added data: elastic, (n,α) , (n,n_1) , (n,γ)
- Upper energy
 - $E_n < 15.4$ MeV (total and integrated cross sections)
 - Extended from 1.6 MeV to 5.0 MeV (elastic and inelastic angular distributions)

Capture

Angular distributions

- Fit quality ranges from is relatively high (n,el) to "OK" (n,n')
- Comparison
 - ENDF/B-VII.1
 - ENDF/B-VIII.0
 - ENDF/B-VIII.1 β 2.1
- Processes
 - Elastic
 - -(n,a)
 - -(n,n1)

160

160 1.6/

160

160

⁹Be(n,2n) VIII.1β2.1

4.5

17.5

20.0

5.0

n+⁹Be integral testing LLNL Pulsed spheres—Neudecker (LANL)

• Removing MT52 addresses Be pulsed sphere problem at high energy

Be in Various HMFs and PMFs Skip Kahler

Now showing E80, e81β1 plus the first and third attempts to fix ⁹Be.

E80 splits the E70, E71 difference ...

 $- k_{ave}(E80) = 0.99938 \pm 0.00273$

E81β1 was also good, but e81β2+fix9Be and 1.005 fix9Be3 remain below the too cool E70

 $- k_{ave}(E70) = 0.99815 \pm 0.00371$

- $-k_{ave}(e81\beta1) = 0.99978 \pm 0.00347$
- $k_{ave}(e81\beta 2+fix9Be) = 0.99695 \pm 0.00336$
- $k_{ave}(e81\beta 2+fix9Be3) = 0.99710 \pm 0.00356$

BeRP Ball, PMF38, is best with E80

 $(k_{calc}C/E = 0.99981(4))$

but drops to

```
0.99788(7) with e81β2+fix9Be
```

and

0.99783(7) with e81β2+fix9Be3.

Calculated Eigenvalues for Various HMF and PMF Critical Assemblies

Charged-particle sublibraries

Outline

- R-matrix formalism
- Charged particle sublibrary
 ⁵Li system
- MF2 resonance parameters
 - ⁵He test

• What is the history of the current d-001_H_003.endf file?

R-matrix formalism

Data

LANL light-element program

- All compound systems A<20 (and a few above)
- Recent work in 2020:

Projectile\Target	$^{1}\mathrm{H}$	$^{2}\mathrm{H}$	$^{3}\mathrm{H}$	³ He	⁴ He	⁶ Li	⁷ Li		
n	2020	VIII.0	VIII.0	VIII.0	VIII.0	2020	VIII.0		
<i>p</i>	2020	VIII.0	VIII.0	VIII.0	2020	VIII.0	VIII.0		
d		VIII.0	VIII.0	2020	$VIII.0^{a}$	VIII.0	VIII.0		
t			VIII.0	VIII.0	2020	VIII.0	TENDL09		
$h(^{3}\text{He})$				VIII.0	VIII.0	VIII.0	TENDL09		
α					VIII.0	TENDL09	TENDL09		
¹¹ B (α + ⁷ Li, α + ⁷ Li [*]	¹¹ B (α + ⁷ Li, α + ⁷ Li [*] , t+ ⁸ Be, n+ ¹⁰ B); ¹¹ C (α + ⁷ Be, p+ ¹⁰ B)								
$^{12}C(\alpha + ^{8}Be, p + ^{11}B)$	$^{12}C(\alpha + ^{8}Be, p + ^{11}B)$								
$^{13}C (n+^{12}C, n+^{12}C^*)$)								
$^{14}C (n+^{13}C)$									
15 N (p+ 14 C, n+ 14 N,	α + ¹¹ B)								
$^{16}O(g+^{16}O, \alpha+^{12}C)$									
$17O(n+16O, \alpha+13C)$	$^{17}O(n+^{16}O, \alpha+^{13}C)$								
¹⁸ Ne (p+ ¹⁷ F, p+ ¹⁷ F [*]	*, $\alpha + {}^{14}O$)							

Overview

Proposed additions/revisions to ENDF/B library

- Tapes all extended energy/better agreement with more data; Covariances planned
 - p-002_He_004.endf [ready] -> [submitted-phase1]
 - d-002_H_003.endf [checking]
 - d-002_He_003.endf [submitted]
 - d-003_Li_006.endf [ready]
 - n-003_Li_006.endf [submitted]
 - t-002 He 004.endf [ready] -> [submitted-phase1]

• Testing

- NJOY
- IAEA/Dunford codes [checkr, stanef, fizcon, psyche, inter]
- ENDF > ACE
 - checkace [LANL ACE format checking tool]
 - mcnp6.1 pencil beam (d+3He only)
- Comparisons
 - with ENDF/B-VII.1 (*aka*, "CP2011"), VIII.0
 - with LLNL Evaluated Charged Particle Library (ECPL-2018)

Changes d-002_He_003.endf

MF	MT	Description	Energy range [MeV]
3		Reaction cross sections	
	2	(z,z0)	(0.01, 1.40)
	600	(z,p_0)	(0.00, 1.40)
6		Energy-angle distributions for emitted particles	
	2	(z,z0)	
	600	(z,p_0)	
		Table 26: ENDF/B-VIII.0 library, file	2:

d-002_He_003.endf

MT	Description	Energy range [MeV]
	Reaction cross sections	
2	(z,z0)	(0.01, 20.00)
600	(z,p_0)	(0.01, 20.00)
	Energy-angle distributions for emitted particles	
2	(z,z0)	
600	(z,p_0)	
	MT 2 600 2 600	MTDescriptionReaction cross sections2 $(z,z0)$ 600 (z,p_0) Energy-angle distributions for emitted particles2 $(z,z0)$ 600 (z,p_0)

Table 27: CP2020 library new evaluation, file: $d\text{-}002_He_003.endf$

Changes p-002_He_004.endf

MF	MT	Description	Energy range [MeV]
3		Reaction cross sections	
	2	(z,z0)	(0.11, 20.00)
6		Energy-angle distributions for emitted particles	
	2	(z,z0)	
		Table 86: ENDF/B-VIII.0 library, file	e:

p-002_He_004.endf

MF	MT	Description	Energy range [MeV]			
3		Reaction cross sections				
	2	(z,z0)	(0.02, 34.30)			
	650	(z,d_0)	(23.02, 34.30)			
6		Energy-angle distributions for emitted particles				
	2	(z,z0)				
	650	(z,d_0)				
	$\mathbf{T}_{1} 1_{1} = 0 7 \qquad \mathbf{O} \mathbf{D} 0 0 0 = 1_{1}^{1} 1_{1} 1$					

Table 87: CP2020 library new evaluation, file: p-002_He_004.endf

Changes t-002_He_004.endf

MF	MT	Description	Energy range [MeV]
3		Reaction cross sections	
	2	(z,z0)	(0.14, 20.00)
6		Energy-angle distributions for emitted particles	
	2	(z,z0)	
		Table 120: ENDF/B-VIII.0 library, file	2:

t-002_He_004.endf

MF	MT	Description	Energy range [MeV]
3		Reaction cross sections	
	2	(z,z0)	(0.10, 20.00)
	50	(z,n_0)	(8.39, 20.00)
	51	(z,n_1)	(12.28, 20.00)
	52	(z,n_2)	(14.65, 20.00)
	600	(z,p_0)	(13.18, 20.00)
	650	$(\mathrm{z},\mathrm{d}_0)$	(10.98, 20.00)
6		Energy-angle distributions for emitted particles	
	2	(z,z0)	
	50	(z,n_0)	
	51	(z,n_1)	
	52	(z,n_2)	
	600	(z,p_0)	
	650	(z,d_0)	
		Table 121: CP2020 library new evaluation, file	e:

t-002_He_004.endf

⁵Li system evaluation ³He(d,d)³He

⁵Li system evaluation ³He(d,p)⁴He

10-3

(d)

ӨСМ

CP2011 has no data.

0.002 +

(c)

Ө_{СМ} CP2011 has no data.

⁵Li system evaluation ⁴He(p,p)⁴He

(c)

(d)

MF2 resonance parameters

- "Full" evaluation
- NJOY test buggy
 - We think we know why...
 - formatting

1.003000+3	2.98959578	0	0	1	0	128	2151
1.003000+3	1.000000+0	0	0	1	0	128	2151
1.000000+0	2.000000+7	1	7	0	1	128	2151
0.000000+0	0.000000+0	1	4	13	0	128	2151
0.000000+0	0.000000+0	3	0	36	6	128	2151
1.99625581	2.98959578	1.000000+0	1.000000+0	1.000000+0	5.000000-1	128	2151
4.172509-7	1.000000+0	1.000000+0	2.000000+0	1.000000+0	0.00000+0	128	2151
1.000000+0	3.96713130	0.000000+0	2.000000+0	5.000000-1	0.000000+0	128	2151
17588938.2	1.000000+0	1.000000+0	5.000000+1	1.000000+0	1.000000+0	128	2151
1.000000+0	3.98821926	0.000000+0	2.000000+0	5.000000-1	0.000000+0	128	2151
-2224575.58	1.000000+0	1.000000+0	5.100000+1	1.000000+0	1.000000+0	128	2151
1.500000+0	0.00000+0	0	0	6	1	128	2151
1.000000+0	0.000000+0	1.500000+0-	-3.700000-1	5.100000+0	5.100000+0	128	2151
0.000000+0	0.000000+0	0	4	24	4	128	2151
154389.922-	-1207.42647-	-84.7282663-	-12.5755660	-379.896791	0.000000+0	128	2151
24025435.2	595.728894-	-1855.95536-	-558.678031	-949.504553	0.000000+0	128	2151
13219863.4	274.125714-	-606.067903	1075.57431	-227.461704	0.000000+0	128	2151
48703152.9-	-610.462073-	-1512.12218-	-325.197899	3042.22955	0.000000+0	128	2151
5.000000-1	0.000000+0	0	0	6	1	128	2151
1.000000+0	1.000000+0	1.500000+0-	-3.000000+0	5.100000+0	5.100000+0	128	2151
0.000000+0	0.000000+0	0	3	18	3	128	2151
15132068.0-	-954.248566	61.1518592	-204.578201	-126.149686	0.000000+0	128	2151
166773435	803.380352	69.1628993	-4577.73718	2603.55979	0.000000+0	128	2151
166773435	799.264407	474.608977	-2095.27865	-3568.63138	0.000000+0	128	2151
2.500000+0	0.000000+0	0	0	6	1	128	2151
1.000000+0	1.000000+0	1.500000+0-	-1.000000+0	5.100000+0	5.100000+0	128	2151
0.000000+0	0.00000+0	0	5	30	5	128	2151
-37941817.8	0.00000+0	0.000000+0	0.000000+0	-3480.84374	0.000000+0	128	2151
166773435	318.099760	55.6858763	-1417.80043	-5645.23792	0.000000+0	128	2151
283514840	887.314189	887.725962	-6937.97393	2545.49572	7304.64606	128	2151
100064061-	-3.609298+3	0.000000+0	0.000000+0	0.000000+0	0.000000+0	128	2151
7305954.43	0.000000+0	0.00000+0	831.697695	-192.163647	807.893837	128	2151
3.500000+0	0.000000+0	0	0	6	1	128	2151
1.000000+0	2.000000+0	1.500000+0-	-1.000000+0	5.100000+0	5.100000+0	128	2151
0.000000+0	0.000000+0	0	4	24	4	128	2151

Manual update: revisions for resonance parameters sections

- <u>https://git.nndc.bnl.gov/endf/format/endf6man.git</u>
 - SHA: 56da8d2b

MF2 resonance parameters

- "Test" evaluation
 - single channel, single resonance

d+³H d-001_H_003.endf

- Questions about the 8.1 repository
 - Is the initial commit 8.0?
 - If not, where did it come from?
 - What is motivating the changes from 8.0?
 - Apparently MT50 is now worse than 8.0:

24

Thank you!

Evaluation pipeline *EDA R-matrix procedure*

- **1.EDAf90** code handles all types of data [*EXFOR/CSISRS; publications; priv. comm.*]
 - total, integrated, diff'l, polarized, unpolarized; neutron- and CP-induced: (n,X), (p,X), (d,X), (t,X),...
- 2. EDAf90 handles all the compound system (here: ¹⁰Be) data *simultaneously*
- 3. Optimization over parameters simultaneously fits all the data with the same parameters
- 4. EDAf90 → ENDF-6 formatted ENDF/B libraries for processing to CE & MG libraries
- 5. Testing & evaluation by hand; future: automate

R-matrix *Overview of evaluation framework*

n+⁹Be Integrated cross sections

n+⁹Be Differential cross sections ⁹Be(n,n₀)⁹Be

n+⁹Be Differential cross sections ⁹Be(n,n₁)⁹Be*

New Evaluation Summary:

- ¹⁰Be analysis has produced a consistent set of cross sections and angular distributions that are in agreement with most of the experimental data at energies up to 5 MeV. Extensions above that energy were based on the experimental data alone.
- Level assignments for the overlapping resonances near $E_n=2.7$ MeV have the opposite parity $(4^-, 3^+ \rightarrow 4^+, 3^-)$.
- Excited states of ⁹Be make important contributions to the (n,2n) cross section (MT=16 \rightarrow 24 in the new evaluation).
- Testing/benchmarking (on slides following n+¹⁶O)

