R-matrix Analysis of ⁸Be System

Som Nath Paneru Los Alamos National Laboratory

CSWEG Meeting 2023

LA-UR-23-32836

Outline

- Motivation
- » New Measurement of deuterium induced reactions on ⁶Li
 - Experimental details
 - Preliminary results
- » R-matrix analysis of ⁸Be
 - Preliminary results
 - Comparisons with Energy Dependent Analysis (EDA) code from LANL

Motivation

- Deuterium induced reactions on ⁶Li are important for nuclear structure and nuclear astrophysics.
- > ENDF/LANL includes only (d,n_0) and (d,p_0) partial cross sections. LLNL-2010 is consistent describing ${}^{6}Li(d,n_{0+1})$ but their ${}^{6}Li(d,p)$ calculation seems to be only ${}^{6}Li(d,p_0)$.
- > The inconsistencies in the *R*-matrix evaluations from literature demands new measurements and new *R*-matrix evaluation of ⁸Be system including more channels.

2010 LLNL vs 2004 LANL (from CSEWG talk by Ian Thompson c.a. 2017)

⁶Li+d 0.429 0.0 ⁷Be

Experimental Details

- Performed at University of Notre Dame using FN Tandem in collaboration with ORNL and LANL.
- Thin target: 200 ug/cm² metallic ⁶Li on 20ugm/cm²
 C backing.
- > E_d=1.8-15.0 MeV
- Neutrons: detected by Deuterated Liquid Scintillator Array (ODeSA)
 - Angular coverage 10 170 degrees
 - TOF spectra
- Charged Particles: detected by Silicon detectors placed at 45° and 135°.
 - Set up as E-dE1-dE2 array.
- Gammas: detected by 3 detectors
 - (HpGe+ GEANIE) at 45°, 90° and 135° degrees.
- Also had 20 stilbene neutron detectors
- Activation measurement was also performed.
 (Results included in *R*-matrix fit)

⁶Li(d,n₀₊₁)⁷Be Analysis

Integrated Cross Sections

Gamma Angular distributions from ⁶Li(d,n₁)⁷Be

- > ⁶Li(d,n₁)⁷Be produces 429-keV gammas, detected by three gamma detectors.
- The integrated cross section would provide the ${}^{6}Li(d,n_{1})^{7}Be$ component which in could be subtracted from ${}^{6}Li(d,n_{0+1})^{7}Be$ to determine ${}^{6}Li(d,n_{0})^{7}Be$ cross sections.

Charged Particle Channels

These results will be included in the *R*-matrix analysis of ⁸Be system.

R-matrix Analysis of ⁸Be System with AZURE2

- → Goal: Multichannel *R*-matrix analysis to describe the ⁸Be system.
- Ongoing Work: Simultaneous fitting of data for ⁸Be compound nucleus including various channels.
- > The data included so far are for these reaction channels:

⁶ Li(d,d) ⁶ Li	⁷ Li(p,p) ⁷ Li*	
⁶ Li(d,α)α	⁷ Li(p,n ₀) ⁷ Be	
α(α,α)α	⁷ Li(p,n ₁) ⁷ Be	
⁶ Li(d,n ₀) ⁷ Be	⁷ Li(p,α)α	
⁶ Li(d,n ₁) ⁷ Be	α(α,p) ⁷ Li	
⁶ Li(d,p ₁) ⁷ Li	α(α,p) ⁷ Li*	
⁶ Li(d,p ₁) ⁷ Li	⁷ Be(n,p) ⁷ Li	
⁷ Li(p,p) ⁷ Li	⁷ Be(n,γ) ⁸ Be	

Channel	Channel Radius (fm)			
⁶ Li+d	6.4639			
α+α	4.0			
⁷ Be+n ₀	4.15			
⁷ Be+n ₁	5.0			
⁷ Li+p ₀	4.15			
⁷ Li+p ₁	5.0			

- > Channel radius values for different channels taken from EDA calculations.
- > Sensitivity to channel radius needs to be studied.
- > The absolute normalizations of data are fixed at 1.

⁸Be Levels Information

- Taken from NNDC
- The levels highlighted in red have not been included so far.
- The 22.63 MeV level was introduced with 1⁺ spin, parity assignment.
- The 22.98 MeV level was introduced with 2⁺ spin, parity assignment.
- The 21.5 MeV state used have negative parity.
- Max orbital angular momentum, I=4

Background Levels 0⁺ at 32 MeV

- 2⁺ at 32 MeV
- 4⁺ at 32 MeV

Data Sources:

- EXFOR
- ⁶Li(d,n)⁷Be activation data from University of Notre Dame, 2022.

	_		
E(level) (keV)		XREF	J ^π (level)
0.0	ABCDE	HIJKL PQRS UVW YZabcdef	0+
3030 10	ABCDE	HIJKL PQRS UVW YZabcd f	2+
11.35E+3 15	CD	JK PRUVWZbcd	4+
16626 <i>3</i>	BCD	HI KL PQR UVW YZabc	2+
16922 3	CD	HI KL PQR UVW YZabc	2+
17640.0 10	E	I L N PQ UVW Zac	1+
18150 4		I LNPQ UV Za	1+
18910		I LMN P T	2-
19069 <i>10</i>		I LNP UV	3+
19235 <i>10</i>		MNP TUVW Z e	3+
E(level) (keV)		XREF	J ^π (level)
19400		I MN U	1-
19860 <i>50</i>	D	IK ORSVWZ	4+
20100	D	MNOP S V Z	2+
20200	D	MPZ	θ+
20.9E+3		N	4-
21.5E+3		LM T Z	3(+)
22000		L	1-
22.05E+3 10		UW	2+

	22.63E+3 10		K	W	1+
	22.98E+3 10			W	2+
	E(level) (keV)		XREF		J ^π (level)
	24000		L O	Z	(1,2)-
	25200	DG	0	Z	2+
	25500	D G			4+
:1)	27494.1 18	EFG		x	0+
	28600?		L		
	32E3?			z	
	≈41E3?	G			

 States highlighted in red are not used so far.

Comparisons with EDA

- > M.Paris provided the EDA parameters.
- These parameters were converted into AZURE2 parameters by C. Brune (Ohio University).
- > Benchmarked the calculation for various channels.
- Identical particles in the exit channel: EDA calculates (or fits) the production data whereas AZURE uses the reaction cross section data. Data are scaled accordingly for these channels only!!!

Results and comparisons with EDA

${}^{6}Li(d,n_{0}){}^{7}Be$ and ${}^{6}Li(d,n_{1}){}^{7}Be$

- > AZURE2 produces both ${}^{6}Li(d,n_{0}){}^{7}Be$ and ${}^{6}Li(d,n_{1}){}^{7}Be$ quite well and even the 7Be production data.
- > EDA reproduced the ${}^{6}Li(d,n_{0}){}^{7}Be$ data quite well but not ${}^{6}Li(d,n_{1}){}^{7}Be$.

Data Used: ⁶Li(d,n_{0,1})⁷Be: Elwyn *et. al.* (Phys. Rev. C, 16, 1977) McClenahan *et. al.* (Nucl. Phys, 11, 1975) ⁶Li(d,n₀₊₁)⁷Be: Hirst *et. al.* (Philosophical Magazine, Vol.45, Issue.366,1954) Ruby *et. al.* (Nuclear Science and Engineering, Vol.71, 1979) Szabo *et. al.* (Nuclear Physics, Section A, Vol.289, 1977) Guzhovskij *et. al.* (Izv. Rossiiskoi Akademii Nauk, Ser.Fiz., Vol.44 (1980))

⁶Li(d,n₀)⁷Be

Data Used: ⁶Li(d,n_{0,1})⁷Be: Elwyn *et. al.* (Phys. Rev. C, 16, 1977)

6 Li(d,p₀)⁷Li and 6 Li(d,p₁)⁷Li

- > AZURE2 produces both ${}^{6}Li(d,p_{0})^{7}Li$ and ${}^{6}Li(d,p_{1})^{7}Li$ quite well.
- > EDA reproduces the ${}^{6}Li(d,p_{0})^{7}Li$ data but ${}^{6}Li(d,p_{1})^{7}Li$ is not well constrained.

Data Used: ⁶Li(d,p_{0,1})⁷Li: Elwyn *et. al.* (Phys. Rev. C, 16, 1977) McClenahan *et. al.* (Nucl. Phys, 11, 1975)

⁷Li(p,n₀)⁷Be and ⁷Li(p,n₁)⁷Be

- AZURE2 produces both 7 Li(p,n₀) 7 Be and 7 Li(p,n₁) 7 Be quite well.
- > EDA reproduces the ${}^{7}Li(p,n_{0}){}^{7}Be$ data quite well ${}^{7}Li(p,n_{1}){}^{7}Be$ data is not included.

Data Used: ⁷Li(p,n₀)⁷Be : Angular distribution: Elbakr *et. al.* (Nuclear Instrum.and Methods in Physics Res., Vol.105, p.519 (1972)) ⁷Li(p,n₁)⁷Be :Integrated cross section: Buccino *et. al.* (Nuclear Physics, Vol.53, Issue.3, p.375 (1964)) ⁷Li(p,n₀₊₁)⁷Be:Integrated Cross section: Gibbons *et. al.* (Physical Review, Vol.114, p.571 (1959))

⁷Li(p,n₀)⁷Be and ⁷Li(p,n₁)⁷Be

Data Used: ⁷Li(p,n₁)⁷Be : Angular distribution: Elbakr *et. al.* (Nuclear Instrum.and Methods in Physics Res., Vol.105, p.519 (1972)) :Angular distribution: Bevington *et. al.* (Physical Review, Vol.121, Issue.3, p.871 (1961))

⁷Li(p,p)⁷Li

Data Used:⁷Li(p,p)⁷Li : Differential cross section: Fasoli et. al. (Nuovo Cimento, Vol.34, Issue.3, p.542 (1964))

⁷Li(p,p)⁷Li

> Fitting at forward angles is not good.

Data Used:⁷Li(p,p)⁷Li : Differential cross section: Fasoli *et. al.* (Nuovo Cimento, Vol.34, Issue.3, p.542 (1964))

⁷Li(p,p')⁷Li

Data Used:⁷Li(p,p')⁷Li : Differential cross section: Fasoli *et. al.* (Nuovo Cimento, Vol.34, Issue.3, p.542 (1964))

⁶Li(d.d)⁶Li

Data Used: ⁶Li(d,d)⁶Li : Angular distribution: Ntemou *et. al.* (Nucl. Instrum. Methods in Physics Res., Sect.B, Vol.407, p.34 (2017)

$\alpha(\alpha,\alpha)\alpha$

 \bigotimes

Data Used: $\alpha(\alpha,\alpha)\alpha$: Differential cross section: T.A. Tombrello et. al.. (Phys. Rev. 129,2252,1963)

⁷Li(p, α) α

Data Used: ⁷Li(p,α)α :Integrated cross section: Rice: Cassagnou *et. al.* (Nuclear Physics, Vol.33, Issue.3, p.449 (1962)) Mani *et . al.* (Nuclear Physics, Vol.60, Issue.4, p.588 (1964)) Saclay:Cassagnou *et. al.* (Nuclear Physics, Vol.33, Issue.3, p.449 (1962))

 $\alpha(\alpha, \mathbf{p})^{7}$ Li and $\alpha(\alpha, \mathbf{p})^{7}$ Li*

Data Used: α(α,p)⁷Li,⁷Li^{*} : Partial cross section: *C.H.King et. al.* (Phys. Rev. C,16, 1712, 1977) : Partial cross section: R. J. Slobodrian et. al. (Zeitschrift fuer Physik A, Hadrons and Nuclei, Vol.308, Issue.1, p.15 (1982)

⁷Be(n,p)⁷Li and ⁷Li(p,γ)⁸Be

Data Used: ⁷Be(n,p)⁷Li : Integrated cross section: Koehler *et. al.* (Phys. Rev. C, 37, 917, 1988) ⁷Li(p,γ)⁸Be: Partial Cross section: D. Zahnow et. al. (Zeitschrift fuer Physik A, Hadrons and Nuclei, Vol.351, p.229 (1995))

Summary/Future Work

- Preliminary results from *R*-matrix analysis of ⁸Be system with AZURE2 was compared with EDA calculations.
- Use AZURE2 parameters as reference while updating EDA evaluations for ⁸Be system.
- > Sensitivity studies for channel radius and background level dependence.
- > Estimate the uncertainty bands.
- > Check for overfitting and see if the parameters are actually constrained by the data.
- Angular distribution data for ⁶Li(d,n)⁷Be from new measurement will be added to the fits.

Collaborators

- > C. Fichtl
- » S. Kuvin
- > H.Y. Lee
- M. Mosby
- > C. Prokop

M. Febbraro J. Nattress R. J. deBoer K. Manukyan D.Robertson E. Stech W. Tan

Acknowledgements: M. Paris (LANL) G. Hale (LANL) K. Toshihiko (LANL) H. Sasaki (LANL) C. Brune (Ohio U) NOTRE DAME

Funded by:

Thank You.

