

Covariance Testing Progress for ENDF/B-VIII.1β1 at ORNL

B.J. Marshall

Mini-CSEWG Livermore, CA April 25-27, 2023

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Outline

- Data-induced uncertainty in VALID benchmarks
- Data-induced uncertainty for fission products in SNF
- C_k values for SNF validation

Data-induced uncertainty in VALID benchmarks

- Historically a check ORNL has used to compare predicted
 variability with observed variability from benchmarks
- TSUNAMI-IP propagates covariance data with sensitivities from benchmarks
- The uncertainty is determined by reaction-nuclide pair and summed to determine the total data-induced uncertainty in $k_{\rm eff}$
- Examination of results highlights covariance data issues

Results

	Number of Cases	Avg C/E (CE_V8.1)	Avg Exp. Unc. (pcm)	St. Dev. Of C/Es (pcm)	Avg 1σ XS Unc (pcm)		% of Cases Within	
Category					E8+SCALE	E8.1+SCALE	Exp. Unc. Band	E8.1+SCALE XS Band
HMF	50	1.00002	193	467	979	950	34.0	96.0
HST	52	0.99900	494	615	652	792	75.0	96.2
IMF	13	1.00132	269	362	1027	1003	46.2	100
LCT	140	0.99874	195	162	603	737	56.4	100
LST	19	0.99920	318	283	824	944	57.9	100
MCT	49	0.99244	400	313	973	758	18.4	51.0
MST	10	0.99177	452	384	1323	1019	0	50.0
PMF	12	0.99902	207	133	1022	1038	66.7	100
PST	81	0.99927	497	429	1344	937	76.5	92.6

Small changes...

- HMF systems show small differences in general: ~3%
 - HMF systems reflected with DU appear to have significant reductions in 235 U nubar uncertainty (~400 pcm in E8.0 \rightarrow ~225 pcm in E8.1)
- IMF system uncertainties ~2% lower with ENDF/B-VIII.1β1
 ²³⁵U nubar ~10% lower, 3rd highest contribution to uncertainty
- PMF systems a little less than 2% higher on average

Big changes (1): HST, LCT, and LST

- HST, LCT and LST systems see large increases in uncertainty
 - Average uncertainty increased ~22% for HST and LCT systems and ~15% for LST systems
- Directly attributable to ~40% increase in nubar contribution to uncertainty in thermal uranium systems
 - ORNL still disagrees with the ¹H covariance introduced in ENDF/B-VIII.0 and its associated significant increase in data-induced uncertainty
- Plot on next slide shows comparison of ENDF/B-VIII.0 and ENDF/B-VIII.1β1 nubar

²³⁵U nubar comparison

CAK RIDGE

7

Covariance Data Testing at ORNL

Historical perspective on LCTs

Big changes (2): MCT, MST, and PST

- MST, MCT, and PST systems see large decreases in uncertainty
 - Average uncertainty decreased ~22% for MST and MCT systems and ~30% for PST systems
- Basically all the ²³⁹Pu covariance data is totally different
 - Nubar uncertainty up by 167%
 - Chi down by 80%
 - Fission down by >85%
 - n,gamma (leading contributor in E8.0) down by 95%
 - 1130 pcm \rightarrow 50 pcm

²³⁹Pu fission, nubar, and n,gamma uncertainties

CAK RIDGE

Covariance Data Testing at ORNL

Questions on VALID results?

Data-induced uncertainty in SNF k_{eff}

- Data-induced uncertainty in minor actinides and fission products used to determine a potential validation penalty in NUREG/CR-7109
- Currently incorporated in NUREG-2215, Appendix 7A, and NUREG-2216, Appendix 6A
- Penalty based on uncertainty as a fraction of fission product worth
 - Work on-going to re-evaluate entirely in ENDF/B-VII.1 and ENDF/B-VIII.0
- Covariance testing looks only at how much the uncertainty has changed

Results

Nuclide	E8.0 Unc. (% Δk)	E8.1 Unc. (% Δk)	Difference (%)				
mo-95	0.00499	0.00499	0.06%				
tc-99	0.00990	0.00990	0.00%				
ru-101	0.00788	0.00788	0.00%				
rh-103	0.02118	0.02735	29.11%				
ag-109	0.00232	0.00232	0.00%				
cs-133	0.01693	0.01693	0.00%				
sm-147	0.00549	0.00549	0.00%				
sm-149	0.02050	0.02050	0.00%				
sm-150	0.00521	0.00521	0.00%				
sm-151	0.01234	0.01234	0.00%				
sm-152	0.00617	0.00617	0.00%				
nd-143	0.03510	0.03510	0.00%				
nd-145	0.01818	0.01818	0.00%				
eu-151	0.00024	0.00024	0.00%				
eu-153	0.00805	0.00805	0.00%				
gd-155	0.01236	0.01236	0.00%				
total	0.05808	0.06060	4.34%				
Red: Big change Orange: SCALE data not in ENDF							

Questions on fission product uncertainty data?

SNF cask c_k calculations

- The integral index $c_{\rm k}$ is used to assess similarity between an application system and potentially applicable benchmarks
- Calculated as the Pearson correlation coefficient of nuclear data induced uncertainty in $k_{\rm eff}$

$$S_{R_1,\Sigma_x} \cdot Cov_{\Sigma_x,\Sigma_y} \cdot S_{R_2,\Sigma_y}^T = \sigma_{R_1,R_2}^2 \square c_k = \frac{\sigma_{R_1,R_2}}{\sigma_{R_1}\sigma_{R_2}}$$

- Covariance data changes the relative contribution of different sensitivities to the overall similarity assessment
- Impacts are typically assessed on PWR SNF at 40 GWd/MTU
 - Included in the regulatory basis documents discussed earlier

Results: ENDF/B-VIII.1B1 vs. ENDF/B-VIII.0

Conclusions

- Data-induced uncertainty significantly increased for thermal ²³⁵U-fueled systems
- ²³⁹Pu covariance changes are worrying
- ¹⁰³Rh only significant important fission product change
- Impact of ENDF/B-VIII.1β1 on burnup credit similarity assessments similar to ENDF/B-VII.1 data

Acknowledgment

This presentation was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

Questions?

