

Covariance testing and update on ²³⁹Pu and ²³⁵U PFNS covariances

D. Neudecker CSEWG April 27, 2023

LA-UR-23-24329

Thanks to: Roberto Capote, Mark Chadwick, Nathan Gibson, Patrick Talou and Andrej Trkov.

These covariances changed from VIII.0 -> VIII.1beta1:

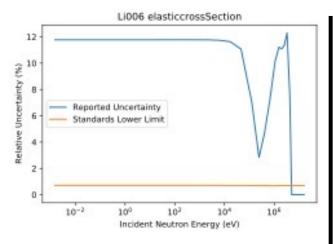
- Light elements: 003_Li_006,004_Be_009, 005_B_010, 008_O_016, 009_F_019
- Fe: 026_Fe_054, 026_Fe_056
- Rh: 045_Rh_103
- Ce: 058_Ce_140, 058_Ce_142
- Dy: Dy_156, Dy_158, Dy_160, Dy_161, Dy_162, Dy_163, Dy_164
- Er: 068_Er_168
- U: U_234, U_235, U_236, U_238
- Pu: 094_Pu_239
- Red isotopes will not be covered here.

List from Nathan Gibson and Patrick Talou.

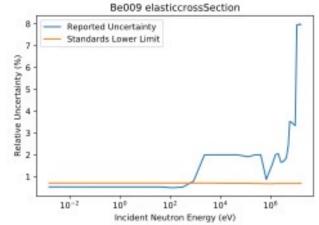
How did we get and test the covariances?

- Nathan Gibson processed MF=31,32,33 with NJOY2016,
- They were processed onto a LANL-defined 51-energy grid, and put into json file.
- The were tested via Denise Neudecker's ``CovVal'' code for:
 - Maths properties: positive semi-definite, symmetry, |cor| <=1
 - Physics properties: checking if relative uncertainties are within
 - Expert judgment limits by Don Smith,
 - Template limits,
 - Standards limit,
 - PUBs (fission only).

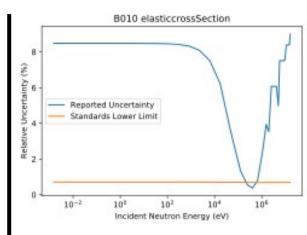
CovVal testing is documented in Neudecker, "Definitions on Testing Whether Evaluated Nuclear Data Relative Uncertainties are Realistic in Size", LA-UR-21-32171 (2021). Comment: I also have that for all ENDF/B-VIII.0 covariances if there is interest.


Mathematical checks are performed.

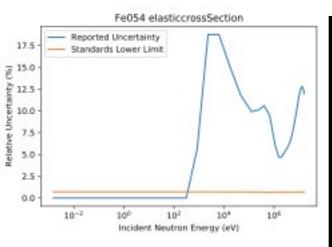
Isotope	Positive semi- definite	Symmetric	cor <= 1
Li6	Y	Y	Failed
Be9	Y	Y	Failed
B10	Y	Y	Failed
F19	Y	Y	Failed
Fe54	Y	Y	Y
Fe56	Y	Y	Failed
Rh103	Y	Y	Failed
Ce140	Y	Υ	Y
Ce142	Y	Y	Y
Dy156	Y	Y	Y

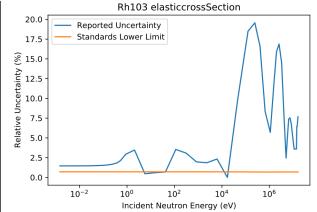

Isotope	Positive semi- definite	Symmetric	cor <= 1
Dy158	Y	Y	Failed
Dy160	Y	Y	Failed
Dy161	Y	Y	Failed
Dy162	γ	Y	Failed
Dy163	Y	Y	γ
Dy164	Υ	Y	Failed
Er168	Y	Y	Υ
U234	γ	Y	Failed
U236	Y	Y	Failed

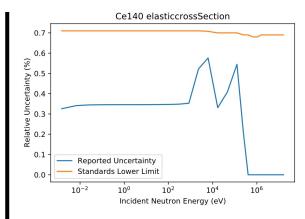
Comment: I wonder if processing onto 51-energy grid leads to small values >0 for cor -14.


Possible "physics issues" in covariances.

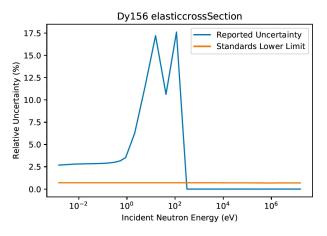
Could the bins of uncertainties end too low in energy for ⁶Li(n,el) cs covariances?

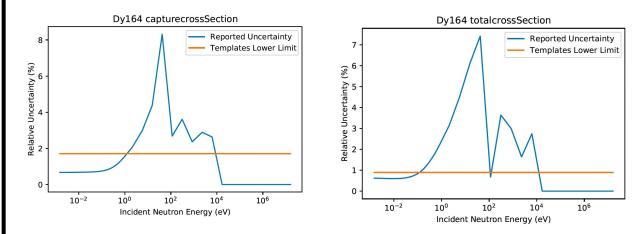

Is the ⁹Be(n,el) cs uncertainty realistic in size? It is below the ¹H(n,el) cs unc.


Is the ${}^{10}B(n,el)$ cs uncertainty realistic in size? Do we know it better than the C(n, n) cs?


Possible "physics issues" in covariances.

Why is the ⁵⁴Fe(n,el) uncertainty zero below 100 eV? Is there an issue in formatting, data, or processing?

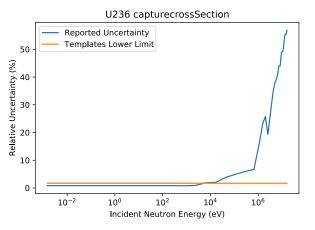

Is the 103 Rh(n,el) cs uncertainty realistic in size? Do we know it better than the C(n, n) cs?

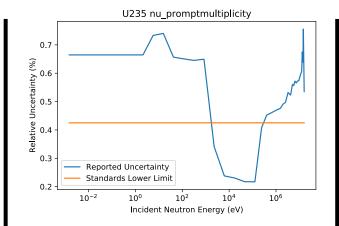

Is the ¹⁴⁰Ce(n,el) cs uncertainty realistic in size? Do we really know it better than the ¹H(n,n) or C(n, n) cs? Also, why is it zero above 100 keV?

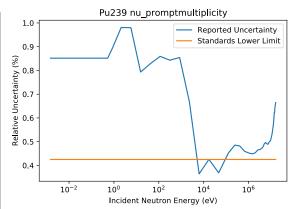
Dy covariances: zero uncertainties for some fast cross sections. Processing, missing data, or formatting issue?

Why is the ^{156,158}Dy(n,el) uncertainty zero above 100 eV? Is there an issue in formatting, data, or processing?

For ¹⁶⁰⁻¹⁶⁴Dy(n,el) zero uncertainties for E >1-10 keV for:

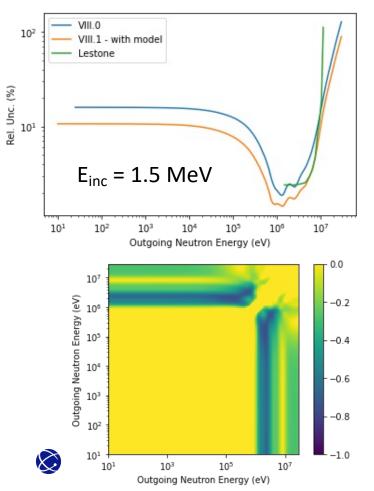

- (n,tot),
- (n,el),
- Capture.




¹⁶⁹Er: zero uncertainties for total, elastic and capture cross sections. Processing, missing data. or formatting issue?

Possible "physics issues" in covariances.

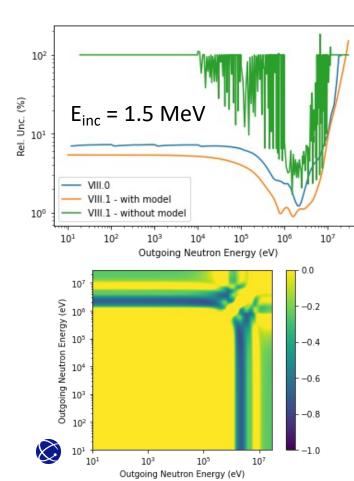
Why is the ²³⁶U(n,g) cs uncertainty zero below 1 keV? Is there an issue in formatting, data, or processing? The URR ²³⁵U(n,f) nu-bar uncertainty is below the ²⁵²Cf(sf) standard. The URR ²³⁹Pu(n,f) nu-bar uncertainty is below the ²⁵²Cf(sf) standard.

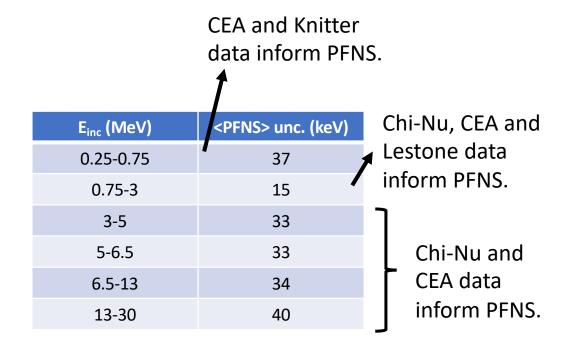


Short update on ²³⁵U and ²³⁹Pu PFNS covariances.

- After correcting a formatting and normalization issue in PFNS covariances, the mean energy uncertainties changed significantly.
- Thanks to Andrej, Nathan, Patrick, and Roberto in helping me figuring out my issue.
- The corrected PFNS covariances are in ENDF/B-VIII.1beta1.

²³⁵U PFNS uncertainties as given ENDF/B-VIII.1beta1




E _{inc} (MeV)	<pfns> unc. (keV)</pfns>	Chi-Nu and Lestone data
0.5-5	24	inform PFNS.
5-7	57	ך
7-12	39	Chi-Nu data
12-30	43	inform PFNS.

CEA PFNS data coming soon reducing uncertainties further.

4/25/23

²³⁹Pu PFNS uncertainties as given ENDF/B-VIII.1beta1

4/25/23

Acknowledgements

- Research reported in this publication was supported by the U.S. Department of Energy ASC-PEM and V&V program at Los Alamos National Laboratory.
- Research reported in this publication was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

