Proposed updates to Pu evaluation for ENDF/B-VIII.0 β_2

Marco T. Pigni Nuclear Data group, Nuclear Energy Fuel Cycle Division Oak Ridge National Laboratory, Oak Ridge, TN

Cross Section Evaluation Working Group Meeting Lawrence Livermore National Laboratory, April 2022, Livermore, CA

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

OVERVIEW: plutonium

- Current status of in ENDF/B-VIII.0 and ENDF/B-VIII.0 eta_1 Pu evaluations¹
- Focus on the Pu thermal solutions (PST) and sanity check on fast metal assemblies (PMF)
 - Pu ENDF β_1 file in the low-energy region included updates in RRR (up to 2.5 keV), TNC and PFNS
 - Improvements over ENDF/B-VIII.0 in the C/E benchmarks (PST 81 cases)
 - Preliminary $v_{\rm p}$ and cross section covariance generation for the resolved resonance energy range up to 2.25 keV
- Proposed updates for $\text{ENDF}\beta_2$
 - Extension of the RRR evaluation up to 5 keV
 - Inclusion of Mosby's data including proper resolution function (thanks to Marian J.)
 - Particular focus on η energy dependence from thermal up to 10 eV
 - \ast Impact of the capture-to-fission ratio at 0.29 eV
 - Updated $v_{\rm p}$ and cross section covariance generation for the resolved resonance energy range up to 5 keV
 - Additional validation to test performance at about 2 eV and in the keV region

ENDF/B-VIII.0 benchmark performance (PST)

- Smooth cumulative χ^2 behavior with slightly positive slope

ENDF/B-VIII.0 β_1 benchmark performance (**PST**)

• Smooth cumulative χ^2 behavior with slightly positive slope. Similar to ENDF/B-VIII.0 but improved

CAK RIDGE

ENDF/B-VIII.0 β_1 benchmark performance (**PST**)

- Smooth cumulative χ^2 behavior with slightly positive slope. Similar to ENDF/B-VIII.0 but improved

SOAK RIDGE

ENDF/B-VIII.0 β_1 benchmark performance (**PST**)

• Smooth cumulative χ^2 behavior with slightly positive slope. Similar to ENDF/B-VIII.0 but improved

CAK RIDGE

ENDF/B-VIII.0 benchmark performance (PMF)

- Smooth cumulative χ^2 behavior except for case PU-MET-FAST-008-001. Very low uncertainty 60 pcm
- Flat slope with slight underestimated reactivity

ENDF/B-VIII.0 β_1 benchmark performance (PMF)

- Cumulative χ^2 behavior similar to ENDF/B-VIII.0
- Slight underestimated reactivity and slight gradient

ENDF/B-VIII.0 β_1 benchmark performance (PMF)

- Cumulative χ^2 behavior similar to ENDF/B-VIII.0
- Slight underestimated reactivity and slight gradient. This shows possible correlations between changes in PST to PMF series

South Content of the second se

ENDF/B-VIII.0 β_1 benchmark performance (PMF)

- Cumulative χ^2 behavior similar to ENDF/B-VIII.0
- Slight underestimated reactivity and slight gradient. This shows possible correlations between changes in PST to PMF series

CAK RIDGE National Laboratory 10

PST performance and η -function

- Reactivity coefficients closely related to the capture-to-fission ratio lpha or the function $\eta = (1+lpha)^{-1}$
- Performance for EALF<0.5 eV depending from thermal values together with 0.29 eV resonance level
- …and neutron multiplicities, of course!

CAK RIDGE National Laboratory

Fitting results (beta2)²

 $^2\mbox{Possible}$ background subtraction problem for the thick transmission measurement on the right.

²¹

Uncertainty quantification

- Due to the large number of parameters, ^{233,235}U and ²³⁹Pu covariance information was generated by a two-step procedure by SAMMY and AMPX
- The generated covariance information was reported in a pre-definite energy grid as a relative covariance matrix
- Energy dependent uncertainty systematically showing $\lesssim 1\%$ from thermal up to 10 eV and up to about 10% at high energies
- Neutron multiplicity uncertainty and correlations were calibrated to an average uncertainty of 0.75% by propagating model parameter uncertainty
- Covariance matrix exhibits correlation pattern related to fluctuating neutron multiplicities although overall correlations are close to unity
- For ENDF/B-VIII.0 β_2 release, refinement to the cross section uncertainties including a customized energy grid for each nucleus is planned

Uncertainty quantification

and verification $_{n+^{233}U \rightarrow \nu_{p}}$ n+ 239 Pu $ightarrow
u_{
m p}$ n+ 235 U $ightarrow
u_{
m p}$ 2.50 2.50 2.90 3.0 3.0 3.0 2.80 Relative uncertainties (%) Relative uncertainties (%) Relative uncertainties (%) 2.5 2.5 2.5 Neutron multiplicities Neutron multiplicities Neutron multiplicities 2.45 2.45 2.70 2.0 2.0 2.0 2.60 2.40 1.5 2.40 1.5 1.5 2.50 1.0 1.0 1.0 2.40 2.35 2.35 0.5 0.5 0.5 2.30 2.30 0.0 2.30 2.20 0.0 0.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 Incident Neutron Energy (keV) Incident Neutron Energy (keV) Incident Neutron Energy (keV) n+²³³U(v_p) n+²³⁵U(v_p) n+²³⁹Pu(v_n) 100 100 100 80 80 80 0 5 0.5 语 ⁶⁰ <u></u> 60 ia 60 t Energy f Energy fuergy 40 0.0 e č -0.5 -0.5 0.5 20 20 20 100 100 100 80 80 80 20 60 20 40 60 Energy bin Energy bin Energy bin

• For U and Pu evaluations preliminary covariance information for the RRR was generated for the ENDF beta library for testing

National Laboratory

23

CAK RIDGE

Uncertainty quantification

 For U and Pu evaluations preliminary covariance information for the RRR was generated for the ENDF beta library for testing and verification

σ vs. E for ²³⁹Pu(n,f)

Conclusions

- Analysis of energy dependence behavior of the η -function linked to benchmark performance
- Proposed updates of Pu RRR evaluation to $\mathsf{ENDF}eta_2$ consists of
 - RRR Extension up to 5 keV including Mosby's data
 - Comparable or improved performance to $\mathsf{ENDF}/\mathsf{B}\text{-VIII.0}$
 - A variation of about 1% in the η -function at 0.29 eV induces 40-50% variation in the PST series cumulative χ^2
 - Updates to the covariance information
- Full validation still in progress for extended PST series

ACKNOWLEDGMENTS

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy

ORNL TEAM: D. Wiarda, J. McDonnell, K. Ramic, K. Guber, T. Green, C. Chapman, J. Brown, G. Arbanas

Thank you!