

Light element evaluation updates for neutrons on ⁶Li, ⁹Be for ENDF/B-VIII.1β2

mini-CSEWG M. Paris, G. Hale & Mike Herman (LANL/T-2) N. Gibson, N. Kleedtke & D. Neudecker (LANL/XCP-5)

2023-04-23

LA-UR-23-24421

2023 R-matrix Workshop on Methods & Applications *Ohio University June 20-23*

- Overview
- First Circular
- Important Dates
- Call for Abstracts
- Registration
- Registration Payment
- Invited Speakers
- Accommodations
- Travel Information
- Participant List
- Code of Conduct

Contact

- rdeboer1@nd.edu
- 🗹 brune@ohio.edu

We would like to invite you to participate in the 2023 R-matrix Workshop on Methods and Applications to be held from June 20 - 23, 2023 at Ohio University. Please note that this workshop will be **in-person only**, no remote participation will be accepted.

The aim of this meeting is to bring together a diverse group of researchers with representatives from experiment and theory who utilize the R-matrix formalism for a variety of purposes. Talks will span a wide range of topics covering experimental, theoretical, evaluation developments using R-matrix.

Organizing committee:

Carl Brune (OU) James deBoer (UND) Gerry Hale (LANL) Marco La Cognata (INFN) Mark Paris (LANL) Marco Pigni (ORNL) Ian Thompson (LLNL)

We acknowledge support from IReNA, the University of Notre Dame, and the Institute of Nuclear and Particle Physics at Ohio University.

- Abstracts by May 7
- Support available, esp. for students/earlycareer
- Not just R-matrix!
 - Nucl. Data
 - Nucl. Astro
 - Nucl. Reactions
 - Theory
 - Expt
 - Atomic systems

Outline

• Evaluation updates: ENDF/B-VIII.1 β 1 \rightarrow ENDF/B-VIII.1 β 2

- $n^{+6}Li$
- $n^{+9}Be$

Caveat Emptor: beta version naming not same as NNDC's git
- β0 = β1.0, β1 = β1.1 etc.

Versions of n-003_Li_006.endf

- ENDF/B-VII.1 (2008-09)
 - R-matrix to 4.0 MeV; Legendre above
 - (n,n'd): *not* in MT=32 but
 - *pseudo-level* description: MT=51,52,54-56,58-81
- CP2011 (2011)
 - R-matrix to 4.3 MeV
 - (n,n'd): MT=32 in this version
 - BUT: LCT=2 (LAB) (should have been \rightarrow LCT=1 (CM))
- ENDF/B-VIII.0
 - MT=105 (n,t) updated
 - But MT=32 from CP2011 was not adopted
 - (n,n'd) from pseudo-level of ENDF/B-VII.1
- ENDF/B-VIII.1
 - β1: CP2020
 - With corrections for MF=6 MT=32 for energy conservation
 - Higher energy R-matrix to 8.0 MeV
 - Inelastic (n,n') MT=52
 - β2:
 - MF=6 MT=2 moved to MF=4 MT=2
 - Other incidental changes (see git.nndc)
 - (n,t) STANDARD restored to ENDF/B-VIII.0

 $\begin{array}{ll} MT{=}105 \mbox{ standard region:} \\ {}^{6}{\rm Li}({\rm n},{\rm t}) & 0.0253 \mbox{ eV to 1 MeV} \\ \hline \mbox{ RESTORED in} \\ \hline \mbox{ ENDF/B-VIII.1\beta2} \end{array}$

n+⁶Li *R-matrix evaluation update/extension ENDF/B-VIII.1β1*

- Previous evaluation ENDF/B-VII.1 (LANL internal "CP2011")
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
 - β2: AND BACK TO MF=4! (N. Gibson: "NJOY/ENDF-102 req'd")
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

- Ratio comparison
 - 8.1β1 (n-003_Li_006.endf) to ENDF/B-VIII.0 (std-003_Li_006.endf)
 - Standard region (0, 1 MeV) was changed for β 1 (for testing, looking ahead to 9.0)

• Absolute comparison

- 8.1β1 (n-003_Li_006.endf) to standards <u>data</u>

- Lower in
$$J^{\pi} = \frac{5}{2}^{-1}$$
 resonance at 245 keV ($E_x \approx 7.5$ MeV) by ~ 1.5%

- 8.1β1 (n-003_Li_006.endf) to ENDF/B-VIII.0 (std-003_Li_006.endf)
- Full ENDF/B region (0, 20 MeV)

n+⁶Li(β 1) integral testing [preliminary] Kleedtke (LANL/XCP-5)

NL/XCP-5)		(ENDF/B-VIII.0 XSDIR)		$Calculated k_{eff}$ (ENDF/B-VIII.1 XSDIR)		
Γ	Experiment	Measured k_{eff}	ENDF/B-VIII.0	New	ENDF/B-VIII.0	New
ſ	HMF63, Case 1	0.99930(400)	1.00340(9)	1.00364(9)	1.00317(9)	1.00357(9)
ſ	HMF63, Case 2	0.99880(470)	1.00365(9)	1.00368(9)	1.00349(9)	1.00361(9)
	PMF33	0.99670(260)	0.99505(10)	0.99529(10)	0.99538(10)	0.99535(10)

- Nominally worse on HMF/PMF
 - HMF/PMF config: cyl. assy. of U5 & P9 with LiD
 - HEU-MET-FAST-063 driven away from a calculated/experimental value of unity; changes are small compared to the measured
 ity

• Bethe spheres

- Better for outer ampules
- Markedly worse (overshooting) for inner ampules

Calculated H_3 Production (ENDF/B-VIII.0 XSDIR)					
NDF/B-VIII.0 New					
.34223(5621)E-29	2.34626(5866)E-29				
.58785(1524)E-28	1.59146(1512)E-28				
.96243(3051)E-28	4.07348(3096)E-28				
.88907(7165)E-28	7.33917(7266)E-28				

Calculated H	I_3 Production
(ENDF/B-V	III.1 XSDIR)

Ampule Number	Production	ENDF/B-VIII.1	New
137	2.4317(1459)E-29	2.31806(5401)E-29	2.33955(5662)E-29
139	1.5917(955)E-28	1.58332(1536)E-28	1.58512(1506)E-28
141	3.9896(2394)E-28	3.96881(3056)E-28	4.06523(3090)E-28
111	6.9235(4154)E-28	6.92023(7197)E-28	7.36749(7367)E-28

n+⁶Li(β 1) integral testing [preliminary] Kleedtke (LANL/XCP-5)

NL/XCP-5)		(ENDF/B-VIII.0 XSDIR)		(ENDF/B-VIII.1 XSDIR)	
Experiment	Measured k_{eff}	ENDF/B-VIII.0	New	ENDF/B-VIII.0	New
HMF63, Case 1	0.99930(400)	1.00340(9)	1.00364(9)	1.00317(9)	1.00357(9)
HMF63, Case 2	0.99880(470)	1.00365(9)	1.00368(9)	1.00349(9)	1.00361(9)
PMF33	0.99670(260)	0.99505(10)	0.99529(10)	0.99538(10)	0.99535(10)

- Nominally worse on HMF/PMF
 - HMF/PMF config: cyl. assy. of U5 & P9 with LiD
 - HEU-MET-FAST-063 driven away from a calculated/experimental value of unity; changes are small compared to the measured ity

	ENDF/B-VIII.0 XSDIR		ENDF/B-VIII.1 XSDIR		
Ampule	ENDF/B-VIII.0	new ⁶ Li	ENDF/B-VIII.1	new ⁶ Li	
111	111 0.99503 1.06004		0.99953	1.06413	
137	0.96321	0.96486	0.95327	0.96210	
139	139 0.99758 0.99985 141 0.99319 1.02102		0.99474	0.99587	
141			0.99479	1.01896	

• Bethe spheres

- ~same for *middle* ampules
- Markedly worse (overshooting) for inner ampules

⁶Li(n,n'd)⁴He laboratory spectra Correction of <u>error</u> in CP2011: LAB \rightarrow CM (LCT=1 \rightarrow 2)

1³σ/dE_d/Ω_d (mb/MeV/sr)

$CP2020 \equiv ENDF/B-VIII.1\beta1$

Panels

- Upper-left: incident n lowenergy (4.83 MeV) neutron spectrum
- Upper-right: 14.1 MeV neutron spectrum
- -Lower-left: 14.1 MeV deuteron spectrum
- -Lower-right: 14.1 MeV ⁴He spectrum

*Note the significant "heating" of 14.1 MeV spectra

*Perhaps explains significant effect on Bethe and pulsed spheres (if 8.0 is "like" LCT=1 in CP2011)

*No other change from 8.0 is significant enough to cause

n+⁶Li(β1) integral testing [preliminary] LLNL pulsed spheres—Neudecker (LANL)

New n+⁶Li (β2)

- Ratio comparison
 - 8.1β2 (n-003_Li_006.endf) to ENDF/B-VIII.0 (std-003_Li_006.endf)
 - Standard region unchanged from ENDF/B-VIII.0

New n+⁶Li (β2)

- Absolute comparison
 - $8.1\beta2$ (n-003_Li_006.endf) to world data

⁹Be

n+⁹Be *R-matrix configuration*

Ch	annel		$a_c(\mathrm{fm})$		ℓ_{\max}	
n+	${}^{9}\text{Be}(\frac{3}{2}^{-})$		4.67		3	
$^{4}\mathrm{He}$	$e^{+6}\bar{He}(0^+)$		5.00		4	
(nr	$a)_0 + {}^8\text{Be}(2^+)$		5.20		3	
n –	$-{}^{9}\mathrm{Be}^{*}(rac{5}{2}^{-})$		5.20		1	
Process		E_n range	Obse	ervables	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$
$^{9}\text{Be}(n, n_0)^{9}\text{Be}$	(1.25 eV)	, 15.4 MeV)	$\sigma_{ m tot},\sigma,\sigma$	$\sigma(\theta), A_y(\theta)$	5782	1.65
$^{9}\text{Be}(n, {}^{4}\text{He}){}^{6}\text{He}$	(0.6	3, 8.5) MeV	σ_{i}	$,\sigma(heta)$	178	1.40
${}^{9}\text{Be}(n,2n){}^{8}\text{Be}$	(1.8	, 14.7) MeV		σ	40	NA
$^{9}\mathrm{Be}(n,n_{1})^{9}\mathrm{Be}^{*}$	(2.	$7, 5.0) { m MeV}$	($\sigma(heta)$	83	1.65
Total					6083	1.75

- Added data: elastic, (n,α) , (n,n_1)
- Extended upper energy from 1.6 MeV to 5.0 MeV

⁹Be(n,2n) (*n*,2*n*) changes: MT=16 VII.1 → MT=24 VIII.1β2

MT=16 (n,2n):
 • Residual = ⁸Be
 MT=24 (n,2nα):
 • Residual = ⁴He

n+⁹Be integral testing [preliminary] Kleedtke (LANL/XCP-5)

, in the second s		Calculated	k _{eff}	Calculated k_{eff}	
		(ENDF/B-VIII.	0 XSDIR)	$(ENDF/B-VIII.1 \ XSDIR)$	
Experiment	Measured k_{eff}	ENDF/B-VIII.0 New		$\mathbf{ENDF}/\mathbf{B}\text{-VIII.0}$	New
HMF75	0.9985(27)	1.00172(9)	1.00229(9)	1.00107(9)	1.00164(9)
HMF101, Case 1	1.00065(+78/-62)	1.00036(4)	1.00231(4)	1.00012(5)	1.00203(5)
HMF101, Case 2	1.00345(+79/-62)	1.00321(5)	1.00514(5)	1.00282(5)	1.00488(5)
HMF101, Case 3	1.00017(+81/-62)	1.00028(4)	1.00217(5)	0.99990(5)	1.00174(4)
HMF101, Case 4	1.00048(+76/-60)	1.00030(5)	1.00215(5)	0.99999(5)	1.00183(5)
HMF101, Case 5	1.00189(+76/-59)	1.00181(5)	1.00372(5)	1.00139(4)	1.00329(5)
MMF7, Case 1	1.0000(45)	1.00094(11)	1.00301(11)	1.00088(11)	1.00318(11)
MMF7, Case 2	1.0000(23)	1.00566(11)	1.00734(11)	1.00580(11)	1.00732(11)
MMF7, Case 3	1.0000(28)	1.00414(10)	1.00464(10)	1.00442(10)	1.00450(10)
MMF7, Case 4	1.0000(28)	1.00339(10)	1.00308(10)	1.00339(10)	1.00320(10)
PMF38	1.0007(19)	1.00092(10)	1.00186(10)	1.00054(10)	1.00173(10)

• Nominally worse on HMF/MMF

- HMF/MMF/PMF config: cyl. assys. of U5 or P9+HEU hemishells & P9 with ⁹Be reflectors
- Generally hotter by 100-200 pcm
- β 2 will explore reversion to ENDF/B-VIII.0 (n,2n) (but in MT=24)
 - This should reduce/cool k_{eff}

MMF7 Sensitivies N. Kleedtke's KSEN runs

• Decreasing sensitivity from left \rightarrow right, top \rightarrow bottom

MMF7 Sensitivies N. Kleedtke's KSEN runs (n,2n) MT=16 (left) MT=24 (right)

- Opposite sign why?
- Size factor of 2 larger magnitude in MT=16
- '2nd Gibson Hypothesis':
 - NJOY is MT16/24 agnostic
 - What about MCNP? (ACE and/or KSEN?)

n+⁹Be integral testing [preliminary] LLNL Pulsed spheres—Neudecker (LANL)

New ⁹**Be(n,2n)** *MT*=24 VIII.1β2 from *MT*=16 VIII.0

Further testing

```
• 6Li
```

- Change LCT=1 (LAB) \rightarrow LCT=2 (CM) in CP2011 and re-run Bethe Sphere, MMF7 *et al.*
- Others?
- Evaluation check
 - How did (n,n') spectra change between 8.0 and 8.1?

```
- Plot pseudo-level (MT=51, ...) representation against MT=32
```

```
- ...
```

• ⁹Be

- Change ENDF/B-VIII.0 MT=16 to MT=24 (no other change)
- Check the 2nd Gibson Hypothesis
 - For ACE (NJOY16): processing agnostic
 - For crits (MCNP): transport agnostic
- Evaluation checks
 - Can this all be angular distribution changes?
 - Restore MF=4 MT=2 from ENDF/B-III.0

Thank you!

Evaluation pipeline *EDA R-matrix procedure*

- **1.EDAf90** code handles all types of data [*EXFOR/CSISRS; publications; priv. comm.*]
 - total, integrated, diff'l, polarized, unpolarized; neutron- and CP-induced: (n,X), (p,X), (d,X), (t,X),...
- 2. EDAf90 handles all the compound system (here: ¹⁰Be) data *simultaneously*
- 3. Optimization over parameters simultaneously fits all the data with the same parameters
- 4. EDAf90 → ENDF-6 formatted ENDF/B libraries for processing to CE & MG libraries
- 5. Testing & evaluation by hand; future: automate

R-matrix *Overview of evaluation framework*

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1 (LANL internal "CP2011")
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1 (LANL internal "CP2011")
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

li6(n,n)li6^{*} d σ /d Ω E= 5.150 MeV

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1 (LANL internal "CP2011")
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1 (LANL internal "CP2011")
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

n+⁹Be Integrated cross sections

n+⁹Be Differential cross sections ⁹Be(n,n₀)⁹Be

9be(n,n)9be $d\sigma/d\Omega = 3.000 \text{ MeV}$

n+⁹Be Differential cross sections ⁹Be(n,n₁)⁹Be*

New Evaluation Summary:

- ¹⁰Be analysis has produced a consistent set of cross sections and angular distributions that are in agreement with most of the experimental data at energies up to 5 MeV.
 Extensions above that energy were based on the experimental data alone.
- Level assignments for the overlapping resonances near $E_n=2.7$ MeV have the opposite parity $(4^-, 3^+ \rightarrow 4^+, 3^-)$.
- Excited states of ⁹Be make important contributions to the (n,2n) cross section (MT=16 \rightarrow 24 in the new evaluation).
- Testing/benchmarking (on slides following n⁺¹⁶O)

