

On integral benchmarks for resolving TSL conflicts for ENDF/B-VIII.1 release

Kemal Ramić¹, Chris W. Chapman¹, Goran Arbanas¹, Jesse Brown¹, BJ Marshall¹, Luke Daemen¹, Doug Abernathy¹, Alexander Kolesnikov¹, Yongqiang Cheng¹, Anibal Ramirez Cuesta¹, Daniel Siefman², Yaron Danon³, Dominik Fritz³

- ²Lawrence Livermore National Laboratory
- ³Rensselaer Polytechnic Institute

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Conflicting Reviews: Polyethylene and Lucite

- 2 research groups evaluating and reviewing each others work -ORNL
 - -NCSU
- NCSU review of ORNL ENDF/B-VIII.1.b2 PE candidate:

From the above, and consistent with CSEWG's "do no harm" policy, I recommend (1) maintaining the ENDF/B-VIII.0 evaluation of HinCH2 for ENDF/B-VIII.1, and (2) rejecting this polyethylene evaluation.

- However, we believe that:
 - ORNL ENDF/B-VIII.1.b2 candidates "do no harm" to integral benchmarks
 - ORNL ENDF/B-VIII.1.b2 candidates candidates perform better on semi-differential & differential validation (transmission & inelastic scattering exp.)
 - ENDF should match the differential data, not be adjusted to integral!
 - + Analogous to decision made at mini-CSEWG 2021

Neutron scattering sampling in neutronics codes

• How do CE Monte Carlo neutronics codes use TSLs for scattering?

- Sampling the distance to next collision (transmission!)
- Sampling the reaction ratio probability
- Sampling the exit energy and angle distributions (TSL!)
- We test these with:
 - Experimental transmission
 - Experimental inelastic scattering ($S(\alpha, \beta)$)

Scattering cross sections are based on phonon spectrum

Inelastic scattering (coherent plus incoherent):

In the incoherent and Gaussian approximation, the $S(\alpha, \beta)$, as expressed in NJOY LEAPR module, in terms of phonon expansion can be written as:

$$S(\alpha, \beta) = e^{-\alpha\lambda} \sum_{n=0}^{\infty} \frac{1}{n!} \alpha^n \frac{1}{2\pi} \times \int_{-\infty}^{\infty} e^{i\beta\hat{t}} \left[\int_{-\infty}^{\infty} P(\beta') e^{i\beta'\hat{t}} e^{-\beta'/2} d\beta \right]$$
(1)

where:

Second Ridge

National Laboratory

$$P(\beta) = \frac{\rho(\beta)}{2\beta \sinh(\beta/2)} \quad \text{and} \quad W = \frac{\int_{-\infty}^{\infty} P(\beta) e^{-\beta/2} d\beta}{AkT} \qquad (2)$$

with $\rho(\beta)$ as the phonon spectrum.

· Coherent elastic scattering:

$$\sigma^{coh} = \frac{\sigma_c}{E} \sum_{E_j > E} f_j e^{-2WE_j}$$
(3)

· Incoherent elastic scattering:

$$\sigma^{incoh} = \frac{\sigma_b}{2} \left(\frac{1 - e^{-4WE}}{2WE} \right) \tag{4}$$

 As we can see all the scattering components are dependent on the inelastic physics through *ρ*(*β*) and W (Debye-Waller factor)

INS measurements can validate $S(\alpha, \beta)$

Direct geometry spectrometers (ARCS and SEQUOIA):

Indirect geometry spectrometers (VISON):

+ Measured quantity $S(Q, \omega)$ is directly related to $S(\alpha, \beta)$:

$$S(\alpha,\beta) = k_B T \exp\left(\frac{-\hbar\omega}{2k_B T}\right) S(Q,\omega)$$
(5)

where T is the temperature, and k_B is the Boltzmann constant.

+ This means that we can directly measure what we store in ENDF TSL files.

5

Structurally different polystyrene (different molecular weights, Mw) have almost identical inelastic spectra.

 Excellent agreement with RPI transmission measurement. Ideally for validation purposes multiple transmission measurements should be used.

- PS and PE have almost identical total cross section for hydrogen.
- PS and PE have significantly different phonon spectrum.

	MCT-012 χ^2	PCM-002 χ^2
Polyethylene	9.12	24.12
Polystyrene	9.13	24.7

Table 1: Calculated χ^2 value using PS and PE TSLs for MCT-012 and PCM-002 benchmarks.

 This demonstrates importance of INS and transmission measurements, because with different phonon spectra we can calculate total cross section nearly identically, as well as critical benchmarks.

Lucite evaluation - INS validation

- Different PMMA samples, powder and sheet (with additives) have almost identical INS spectra.
- ORNL has a better agreement with INS measurement.
- NCSU updated the phonon spectrum yet agreement with INS measurements was not improved.

Lucite evaluation - Transmission validation

- Plexiglass G and G-UVT samples have different total cross section due to additives.
- ORNL TSL has an overall better agreement with Plexiglass G (common form) than both updated NCSU and ENDF/B-VIII.0 evaluations.

Lucite - Pulsed neutron die-away validation

- ORNL TSL performs significantly better than ENDF/B-VIII.0 evaluation.
- ORNL and NCSU perform similarly due to their similar total cross sections.
- Similar to critical benchmarks there is a high sensitivity in changes to the total cross section, which may not be justifiable in comparison with inelastic measurements.

Lucite - Critical benchmarks validation

- ORNL TSL performs better including new HMT-004 benchmarks from LLNL
- This demonstrates importance of INS and transmission measurements, because with different phonon spectra we can calculate total cross section similarly, as well as critical benchmarks.

Polyethylene (PE) evaluation

Motivation:

- New transmission measurements at RPI, as well as criticality benchmarks from LLNL and LANL.

- ORNL PE evaluation was optimized with respect to differential measurement at VISION spectrometer at SNS, as well as transmission measurement from RPI.

• Optimization summary:

- assign weights for each distinct region of GDOS and vary them by Dakota

- calculate χ^2 with respect to VISION INS measurement. ENDF files can be directly compared to the VISION data by extracting $S(\alpha, \beta)$ at specific (α, β) values measured in VISION experiment and applying well-know VISION experimental resolution.

- calculate $\chi^{\rm 2}$ with respect to RPI transmission measurement

- repeat the process until combined χ^2 is minimized

Polyethylene validation- INS measurements at ORNL

* ORNL PE has better agreement with the shape of all different PEs!

Polyethylene validation- Transmission measurements at RPI

Polyethylene validation- Transmission measurements at RPI

• C/E comparison to Lee data:

• C/E comparison to Herdade data:

• C/E comparison to Granada data:

Polyethylene validation- Pulsed neutron die-away measurements

New ORNL evaluation reduces, compared to ENDF/B-VIII.0, total neutron scattering cross section resulting in an increase in PNDA *α* compared to ENDF/B-VIII.0. ENDF/B-VIII.0 and ORNL calculated *α* values are within 1-2% of each other.

Polyethylene validation- Integral criticality benchmarks

 We have tried to identify all relevant thermal benchmarks that contain Polyethylene in International Handbook of Evaluated Criticality Safety Benchmark Experiments 2021.

- ORNL evaluation reduces, compared to ENDF/B-VIII.0, total neutron scattering cross section resulting in an increase in neutron multiplication factor k_{eff}.
- For most benchmarks k_{eff} for calculated values is anywhere from 200- 4000 pcm away from experimental values, which is
 indicative of possible issues with nuclear data besides TSL.

Fission density spectra in benchmarks

- Three bin spectral definition from ICSBEP Handbook provides a rough quantification of the neutron energy spectrum
- TEX thermal cases are not very thermal
- PU-MET-THERM-002-005 has about 66% fissions induced by thermal neutrons, corresponding to an EALF of 2.15 eV

• How effective are these benchmarks at differentiating among different 1H-poly TSL evaluations?

Sensitivity data confirm lack of sensitivity

 Majority of sensitivity is above 10 eV

- TSL not even being used

 Misprediction of k_{eff} for this benchmark is unlikely to be driven by TSL
 CAUTION: This is based on the integrated 1D scattering sensitivity

- Good news: new experiments with thicker moderator plates have been performed and evaluated
 - PMT-004 evaluations approved at April TRG meeting for inclusion in 2023 ICSBEP Handbook
 - Two cases include polyethylene
 - Thermal fission fraction of these two cases is 72.9% and 74.6%
 - Patience: these two cases will likely be useful and available within the next year

+ Less good news: Only two points, both with Pu, and likely highly correlated

Summary & Conclusions

- Polystyrene:
 - ORNL evaluation in TSL review process for ENDF/B-VIII.1
 - Excellent agreement with INS and transmission measurements
 - PS and PE evaluations with different phonon spectra, similar total xs., calculate k_{eff} similarly

	Polyethylene		Lucite	
	ORNL	ENDF/B-VIII.0	ORNL	NCSU
Crit. bench.	slightly worse	slightly better	same	same
PNDA	slightly worse	slightly better	same	same
Quasi-differential	better	worse	better	worse
Differential	better	worse	better	worse

• Crit. benchmarks:

- While extremely useful for validation of nuclear data at all energies, critical benchmarks are not the best tool to provide a definitive answer on conflicting TSLs

- INS and transmission measurements need to be the basis of validation of TSLs

Acknowledgements

- This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
- This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.
- This research used resources of the Compute and Data Environment for Science at ORNL, which is supported by DOE SC under Contract No. DE-AC05-00OR22725.
- Computational resources were also provided by the Rensselaer Polytechnic Institute Center for Computational Innovations, more specifically the Artificial Intelligence Multiprocessing Optimized System supercomputer.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

LANL ENDF/B-VIII.1.b1 testing

CAK RIDGE

Backup slides

