

UK Ministry of Defence © Crown owned copyright 2023/AWE

Testing ENDF/B-VIII.1_beta1 files using fast ICSBEP benchmarks

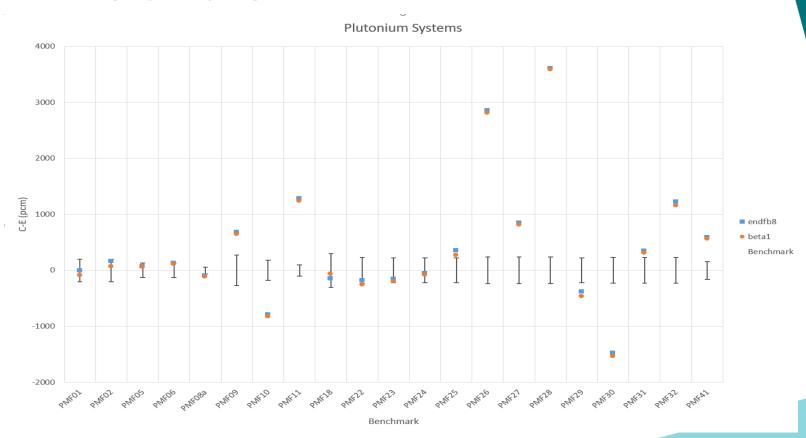
Mark Cornock and Tim Gaines AWE.plc

Validation Session Mini CSEWG April 2023

First Do No Harm

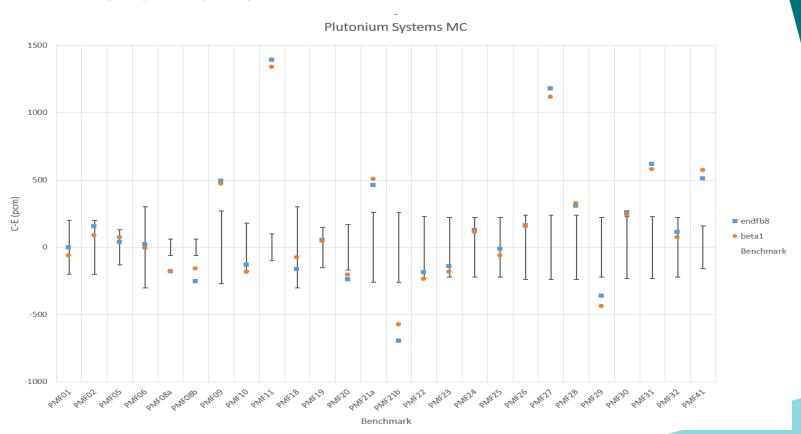
Data and Processing

AVE

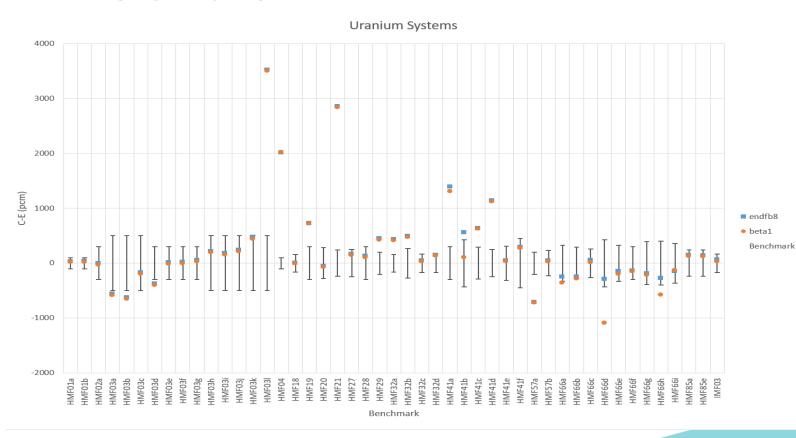

- 2 Datasets
 - beta1 tag, commit 9611a574
 - ENDF/B-VIII.0 taken from NNDC website.
- Both processed with NJOY2016.67, commit1cb7237
 - Reprocessed ENDF/B-VIII.0 from scratch to eliminate differences in processing.
 - Groupwise, GROUPR, 460 groups.
 - Pointwise, ACER
- Cr54 processing failure, Tracker 471 (fix 06/04), Issues in MF32.
 - Fixed file passes through NJOY without issue.

Tests

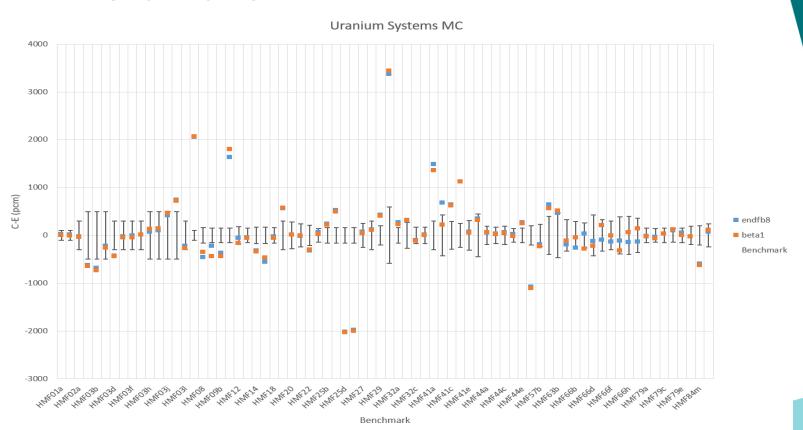
AVE


- 90 ICSBEP cases. Fast Metal systems
 - Pu, HEU, Mixed and U233 cores.
 - 16 different reflectors.
 - 1D Deterministic Sn transport and MCNP Monte Carlo Transport calculations.

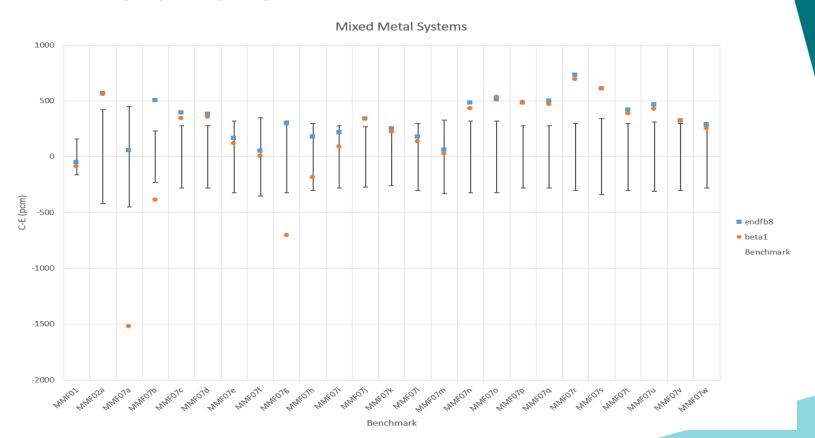
PMF Benchmarks



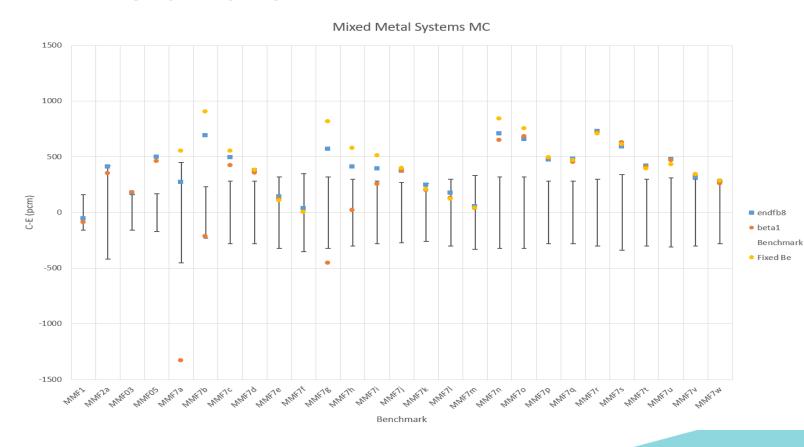
PMF Benchmarks

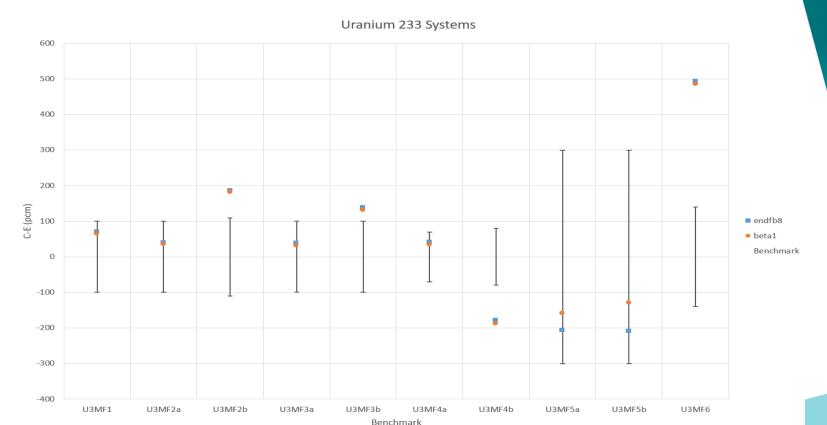


HMF Benchmarks

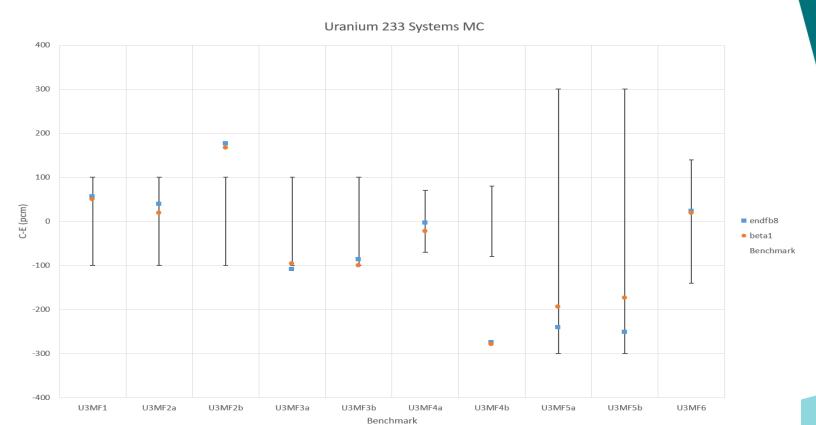


HMF Benchmarks


MMF Benchmarks



MMF Benchmarks



U3MF Benchmarks

U3MF Benchmarks

Goodness of Fit Metrics

Chi Squared like parameter

$$\chi^2 = \sum \frac{\left(\left(k_{calc} - k_{exp} \right) / \delta k_{exp} \right)^2}{n}$$

Average difference between calculation and benchmark values.

$$\langle |\Delta| \rangle = \sum \frac{|k_{calc} - k_{exp}|}{n}$$

Goodness of Fit Metrics

	"Chi Squa	red"				Average D	ifference		
	Groupwise		Pointwise			Groupwise	e	Pointwise	
	ENDF8.0	beta1	ENDF8.0	ENDF8.0 beta1		ENDF8.0 beta1		ENDF8.0	beta1
ALL	13.81	13.79	10.29	10.27		451.16	463.66	358.47	355.09
HEU	15.01	15.12	14.26	14.70		453.68	463.52	393.16	397.20
MIX	1.69	2.08	2.43	2.17		340.47	387.88	388.41	373.41
PU	31.69	30.91	11.05	10.01		734.57	727.01	317.73	310.08
U233	2.43	2.33	1.87	1.81		160.14	144.08	126.20	112.20
Bare	0.56	0.72	2.20	1.79		102.84	113.28	211.54	204.00
Beryllium	1.80	2.16	2.27	2.15		326.72	373.28	354.30	335.70
Steel	107.63	105.52	0.41	0.43		2175.32	2132.89	111.00	113.67
HEU	1.03	1.05	1.12	1.05		92.04	101.74	90.00	92.33
Nat U	3.39	3.31	0.72	0.74		298.65	295.04	191.21	197.74

JEZEBEL Revisions

			k-effective		bias (pcm))
	Benchmark	error	VIII.0	VIII.1	VIII.0	VIII.1
R2 simple	1	0.002	0.99998	0.99939	-2	-61
R4 simple	1	0.0011	1.00076	1.00024	76	24
R4 detailed A	0.99999	0.0011	1.00031	0.99977	32	-22
R4 detailed B	1.00016	0.0011	1.00077	1.00021	61	5
R4 detailed C	1.0002	0.0011	1.0005	0.99997	30	-23
R4 detailed D	1.00128	0.0011	1.00151	1.00095	23	-33

Conclusions/Observations

AVE

- Noticeable yet small decrease in Criticality.
 - A couple of HMF models have small increases (no groupwise models for these).
 - U233 Good, improvement for U3MF5
- Bug in beta1 tagged Be9 file causes big changes in models with thick
 Be reflectors
 - New file fixes problem but we still don't do well for Be Mixed metal (MMF7).
 - How does everyone else do with Be9 generally.
- No Major issues with Fast Critical systems in Groupwise or Pointwise calculations
- Changes in Criticality seem consistent with expectations of PFNS changes.

First Do No Harm

Thank you for your attention

Questions

				Grou pwi se		Pointwise	
				C-E (pcm)		C-E (pcm)	
Reflector	Syste m	k-exp	error	ENDF8	Beta1	ENDF8	Beta1
None	HMF01a	1	0.001	30.58	18.61	22	3
None	HMF01b	1	0.001	31.51	19.47	14	-10
Nat U	HMF02a	1	0.003	-7.75	-33.53	-27	-37
Nat U	HMF03a	1	0.005	-564.9	-585.46	-631	-649
Nat U	HMF03b	1	0.005	-632.95	-655.45	-685	-736
Nat U	HMF03c	1	0.005	-173.77	-197.76	-223	-265
Nat U	HMF03d	1	0.003	-374.21	-399.13	-437	-444
Nat U	HMF03e	1	0.003	13.03	-13.3	-27	-54
Nat U	HMF03f	1	0.003	20.49	-5.83	-6	-46
Nat U	HMF03g	1	0.003	50.84	24.23	14	11
wc	HMF03h	1	0.005	213.74	194.48	65	128
WC	HMF03i	1	0.005	175.12	151.18	97	138
WC	HMF03j	1	0.005	241.11	212.47	409	461
wc	HMF03k	1	0.005	473.48	443.28	739	72
Nickel	HMF03I	1	0.005	3521.19	3502.33	-223	-272
Light wate	HMF04	0.9985	0.001	2013.35	2024.8	2051	2058
None	HMF08	0.9989	0.0016			-461	-359
Beryllium	HMF09a	0.9992	0.0015			-228	-446
BeO	HMF09b	0.9992	0.0015			-371	-44
Polythene	HMF11	0.9989	0.0015			1634	1794
Aluminiur	HMF12	0.9992	0.0018			-59	-172
Steel	HMF13	0.999	0.0015			-47	-57
DU	HMF14	0.9989	0.0017			-328	-348
None	HMF15	0.9996	0.0017			-561	-470
None	HMF18	1	0.0016	5.09	-8.71	-28	-57
Graphite	HMF19	1	0.003	721.76	717.98	559	572
Polythene	HMF20	1	0.0028	-58.06	-70.05	9	13
Steel	HMF21	1	0.0024	2851.44	2834.2	-25	-11
Aluminiur	HMF22	1	0.0021			-324	-309
Vanadium	HMF25a	0.9987	0.0014			60	23
Vanadium	HMF25b	0.999	0.0016			234	216
Vanadium	HMF25c	0.9991	0.0016			517	493
Vanadium		0.9995	0.0016			-2020	-2034
Vanadium	HMF25e	0.9991	0.0016			-1989	-2004
Lead	HMF27	1	0.0025	164.19	147.64	66	42
Nat U	HMF28	1	0.003	128.88	102.5	121	103
DU	HMF29	1	0.002	444.04	421.79	418	
Polythene		1	0.0059			3366	343

				Groupwis	e	Pointwise	
				C-E (pcm)		C-E (pcm)	
Reflector	System	k-exp	error	ENDF8	Beta1	ENDF8	Beta1
Nat U	HMF32a	1	0.0016	431.05	416.35	261	230
Nat U	HMF32b	1	0.0027	489.3	475	301	309
Nat U	HMF32c	1	0.0017	42.82	31.09	-110	-114
Nat U	HMF32d	1	0.0017	148.99	139.17	8	-:
Be rylli um	HMF41a	1.0013	0.003	1393.12	1306.57	1486	135
Be rylli um	HMF41b	1.0022	0.0043	557.47	107.14	678	21
Graphite	HMF41c	1.0006	0.0029	633.74	622.61	642	62
Graphite	HMF41d	1.0006	0.0025	1135.85	1120.48	1121	112
Graphite	HMF41e	1.0006	0.0031	46.5	32.04	64	5
Graphite	HMF41f	1.0006	0.0045	284.78	271.46	346	31
Aluminiur	HMF44a	0.9995	0.0019			45	6
Aluminiur	HMF44b	0.9995	0.0017			25	1
Aluminiur	HMF44c	0.9995	0.0019			60	3:
Aluminiur	HMF44d	0.9995	0.0014			19	-2
Aluminiur	HMF44e	0.9995	0.0015			262	24
Le ad	HMF57a	1	0.002	-709.24	-725.59	-1081	-110
Lead	HMF57b	1	0.0023	43.07	27.66	-194	-23
LiD	HMF63a	0.9993	0.004			639	56:
LiD	HMF63b	0.9988	0.0047			459	50
Be rylli um	HMF66a	1.003	0.0033	-251.1	-356.81	-196	-11
Be rylli um	HMF66b	1.0023	0.0029	-250.08	-285.44	-264	-4
Be rylli um	HMF66c	1.0023	0.0026	54.23	11.92	30	-28
Be rylli um	HMF66d	1.0043	0.0043	-293.36	-1087.37	-133	-22
Be rylli um	HMF66e	1.003	0.0033	-153.21	-196.59	-94	20
Be rylli um	HMF66f	1.0028	0.003	-140.66	-151.49	-134	
Be rylli um	HMF66g	1.0048	0.0039	-189.05	-214.92	-120	-32
Beryllium	HMF66h	1.0039	0.004	-278.02	-575.89	-149	5
Be rylli um	HMF66i	1.0027	0.0036	-150.19	-131.42	-140	13
Titanium	HMF79a	0.9996	0.0015			-18	-2
Titanium	HMF79b	0.9996	0.0014			-39	-6
Titanium	HMF79c	0.9996	0.0015			28	24
Titanium	HMF79d	0.9996	0.0014			101	111
Titanium	HMF79e	0.9996	0.0015			52	
Aluminiur	HMF84a	0.9994	0.0019			-29	-34
Titanium	HMF84m	0.9994	0.002			-600	-62
	HMF85a	0.9995	0.0024	147.04	131.26		
Thorium	HMF85e	0.9995	0.0024	135.08	119.25	71	10
None	IMF03	1	0.0017	60.34	29.84	73	78

				Groupwise		Pointwise							Groupwis	e	Pointwise	
				C-E (pcm)		C-E (pcm)							C-E (pcm)		C-E (pcm)	
Reflector	System	k-exp	error	ENDF8	Beta1	ENDF8	Beta1	F	Reflector	System	k-exp	error	ENDF8	Beta1	ENDF8	Beta1
HEU	MMF01	1	0.0016	-51.11	-87.96	-55	-91	N	None	PMF01	1	0.002	-9.07	-88.32	-2	-61
Nat U	MMF02a	1	0.0042	569.43	558.55	411	352	N	None	PMF02	1	0.002	156.89	72.27	153	87
None	MMF03	0.9993	0.0016			176	179	T	Tungsten	PMF05	1	0.0013	70.18	63.96	37	73
Aluminiu	MMF05	0.999	0.0017			498	461	N	Nat U	PMF06	1	0.0013	131.37	108.91	20	-6
Beryllium	MMF07a	1	0.0045	56.17	-1518.85	272	-1329	T	horium	PMF08a	1	0.0006	-95.77	-113.61	-181	-182
Beryllium	MMF07b	1	0.0023	503.16	-389.37	690	-216	T	horium	PMF08b	1	0.0006			-253	-159
Beryllium	MMF07c	1	0.0028	395.9	345.43	495	424	1	Aluminiur	PMF09	1	0.0027	679.29	647.32	493	469
Beryllium	MMF07d	1	0.0028	380.77	354.57	377	356	N	Nat U	PMF10	1	0.0018	-789.86	-821.57	-132	-184
Beryllium	MMF07e	1		166.1	118.2	143	119		ight Wate		1	0.001	1282.89	1235.97	1392	
Beryllium	MMF07f	1			6.85	38	3	Е	Beryllium	PMF18	1	0.003	-146.17	-62.94		
Beryllium		1		296.63	-703.58	569	-455		Beryllium		0.9992	0.0015			53	
Beryllium	MMF07h	1			-186.11	409	18	_	DU	PMF20	0.9993	0.0017			-241	
Beryllium	MMF07i	1	0.0028	215.67	91.42	392	254	E	Be ryllium	PMF21a	1	0.0026			462	
Beryllium	MMF07j	1		339.2	337.77	370	372	E	Be O	PMF21b	1	0.0026			-697	
Beryllium	MMF07k	1	0.0026		222.16	244	199	N	None	PMF22	1	0.0023	-181.22	-253.69	-189	
Beryllium		1		179.29	135.81	175	127			PMF23	1	0.0022	-160.5	-201.54	-143	
	MMF07m	1			27.4	53	36	F	Polythene		1	0.0022	-59.67	-84.41		
Beryllium		1		482.25	433.53	705	647		iteel	PMF25	1	0.0022	348.94	271.18		
Beryllium		1		511.59	534.94	656	683	_	iteel	PMF26	1	0.0024	2848.55	2814.68		
Beryllium		1		484.24	485.72	473	491	_	olythene		1	0.0024	842.02	810.42		
Beryllium		1		498.91	470.09	480	450		iteel	PMF28	1	0.0024	3601.16	3591.89	307	
Beryllium		1			692.58	729	714	_	None	PMF29	1	0.0022	-381	-463.24		
Beryllium		1		608.55	608.7	591	627			PMF30	1	0.0023	-1479.86	-1536.45		
Beryllium		1			387.83	417	410	_	olythene		1	0.0023		314.08		
Beryllium		1		467.44	428.07	475	470		iteel	PMF32	1	0.0023	1226.5	1152.51	113	
Beryllium		1		321.98	317.32	313	339		DU	PMF41	1	0.0016	587.52	558.15	510	
Beryllium	MMF07w	1	0.0028	288.47	254.23	281	260	Ν	None	SMF08	1.0026	0.0034			-651	-620

					Groupwise		Pointwise	
					C-E (pcm)		C-E (pcm)	
Reflector	System	k-exp		error	ENDF8	Beta1	ENDF8	Beta1
None	U3MF1		1	0.001	69.85	65.39	56	50
HEU	U3MF2a		1	0.001	39.73	35.73	39	19
HEU	U3MF2b		1	0.0011	185.29	181.53	176	167
Nat U	U3MF3a		1	0.001	38.1	31.79	-109	-96
Nat U	U3MF3b		1	0.001	138.58	131.41	-87	-101
Tungsten	U3MF4a		1	0.0007	40.78	33.9	-4	-23
Tungsten	U3MF4b		1	0.0008	-178.99	-187.29	-275	-279
Beryllium	U3MF5a		1	0.003	-207.13	-159.22	-241	-194
Beryllium	U3MF5b		1	0.003	-209.19	-129.61	-252	-174
Nat U	U3MF6		1	0.0014	493.81	484.91	23	19