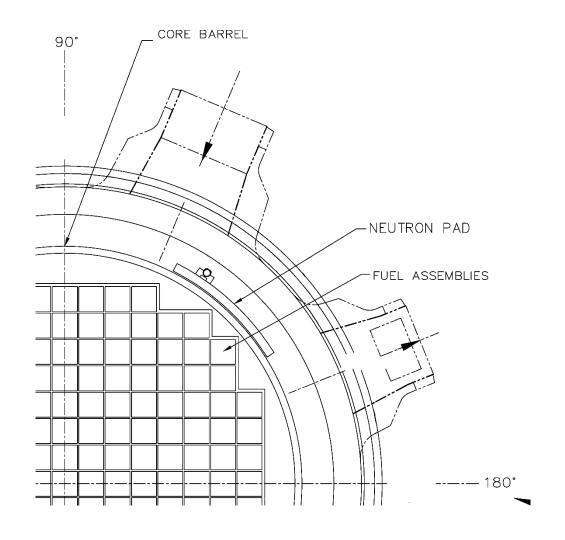
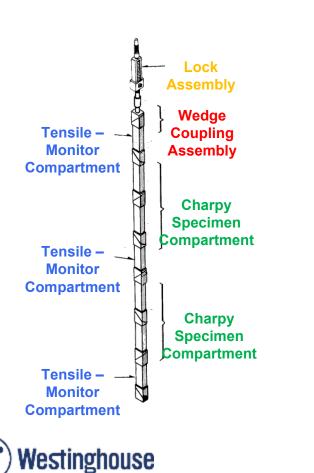
Evaluation of the Pool Critical Assembly (PCA) Benchmark with ENDF/B-VIII.1beta1 using MCNP6

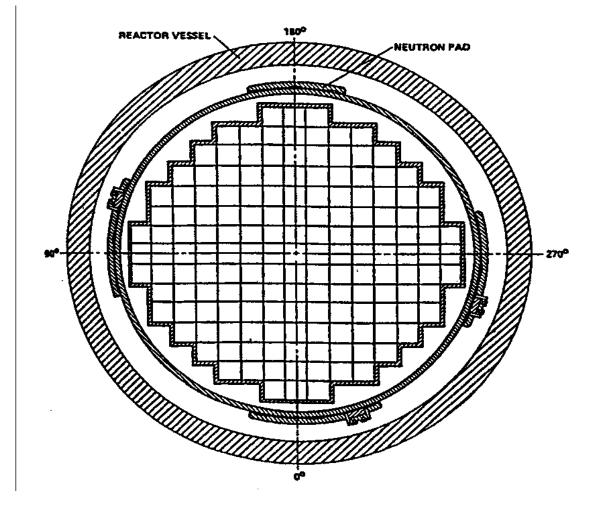
- **Greg Fischer**
- fischega@westinghouse.com



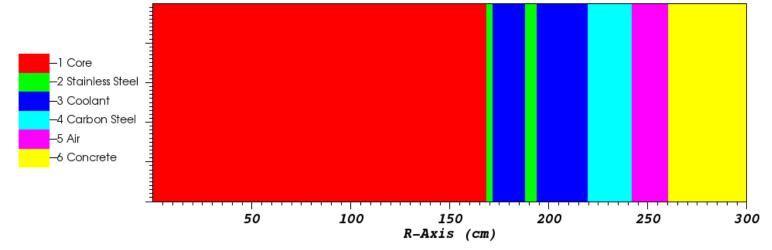
Overview

- Background on RPV fluence calculations for LWRs
- ENDF/B-VIII.1b1 Benchmarking
 - 1D PWR Comparison
 - Pool Critical Assembly

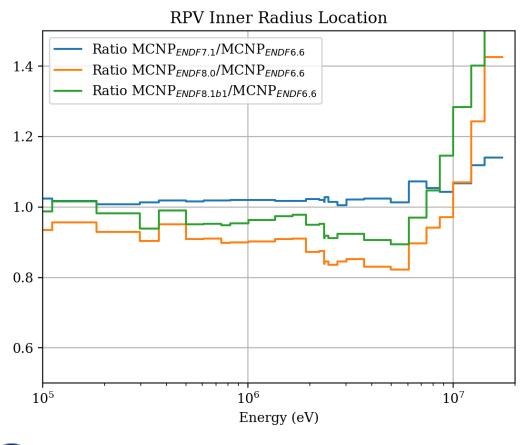

- Most fission neutrons remain inside the core, supporting the self-sustaining chain reaction
- We're interested in the relatively few neutrons that leak outside of the core and impinge upon the reactor vessel

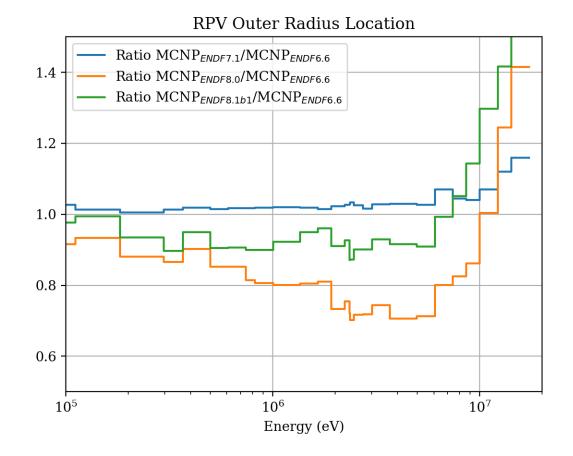


- The reactor pressure vessel and internals components are susceptible to irradiation-induced degradation of material properties
- These changes are manifested as:
 - Reduction in the toughness during ductile fracture
 - Tendency for brittle fracture to onset at increasing temperatures
- All reactors are required to have a materials surveillance program to monitor changes in reactor vessel materials properties

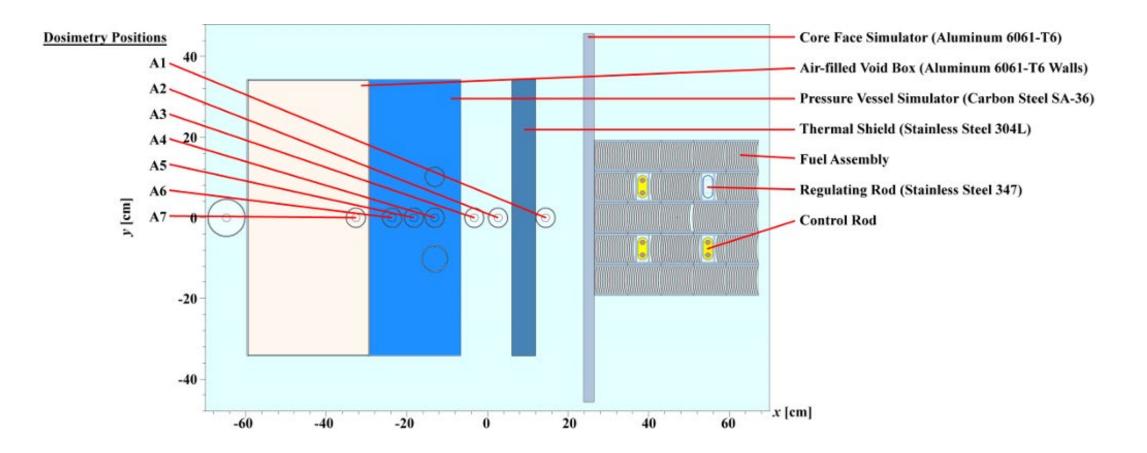


- Beginning in the 1980s, the NRC began to be concerned about the possibility of pressurized thermal shock (PTS) events
 - Postulated accident causes safety injection of cold coolant, placing severe thermal stresses on the (hot) reactor vessel
 - Event is followed by re-pressurization of the reactor vessel
 - This sequence of events could challenge the structural integrity of the reactor vessel
- Reactor vessel neutron exposure (especially for P's) is carefully tracked and monitored


1D PWR Benchmarking


- A 1-D Monte Carlo model of a PWR was constructed to benchmark the cross sections:
 - Similar to the model used to generate the "fine group" weighting spectra for the BUGLE-96 library
 - Tallies were recorded at the inside surface and outside surface of the reactor pressure vessel

1D PWR Benchmarking



- The Pool Critical Assembly (PCA) Pressure Vessel Simulator experiment was performed in the early 1980s as part of the NRC's LWR Pressure Vessel Surveillance Dosimetry Improvement Program (LWR-PV-SDIP)
 - Core region consists of high-enriched U-235 plates in a water pool with simulated reactor internals structural materials
 - Measurements: AI-27, Ni-58, Rh-103, In-115, U-238, and Np-237 sensor materials
 - Still widely-used as a methodology benchmark today
- Benchmark was recently re-analyzed with exact geometry by Dr. Kulesza (LANL/X-5), and MCNP inputs were published and available for use:
 - NUCLEAR TECHNOLOGY · VOLUME 197 · 284–295 · MARCH 2017
 - Paper: <u>https://doi.org/10.1080/00295450.2016.1273711</u>
 - MCNP Inputs: <u>https://doi.org/10.2172/1601379</u>

Ref: Kulesza, Martz

- MCNP workflow:
 - Step 1: KCODE calculation
 - Step 2: SSW (volumetric) record fission source
 - Step 3: SSR neutron transport to sensor locations
- Other notes:
 - Dosimetry cross sections used IRDFF-II data: <u>https://www-nds.iaea.org/IRDFF/</u>
 - Weight windows generated with ADVANTG
 - High-energy weight windows for AI-27 (tricky)
 - Lower-energy weight windows for the other sensors

• Measurements:

	Reaction Rate (rps per source neutron) ($\pm 1\sigma$ Uncertainty)						
Location	²⁷ Al((n, α)	⁵⁸ Ni	(n, p)	$^{103}\mathrm{Rh}(\mathrm{n},\mathrm{n}')$		
A1 A2 A3 A4 A5 A6 A7	5.55E-33 7.19E-34 3.16E-34 7.19E-35 2.89E-35 1.09E-35 	(1.0%) (2.0%) (1.0%) (2.0%) (2.2%) (2.2%)	6.35E-31 6.74E-32 2.52E-32 5.78E-33 2.28E-33 8.10E-34	(1.4%) (2.0%) (1.4%) (1.0%) (1.8%) (2.2%) —	4.06E-30 	(1.0%) (1.5%) (5.0%) (5.0%) 	
Location	115 In (n, n')		$^{238}U(n,f)$		$^{237}Np(n, f)$		
A1 A2 A3 A4 A5 A6 A7	1.06E-30 1.15E-31 3.76E-32 1.11E-32 5.22E-33 2.21E-33 	(1.0%) (2.0%) (1.0%) (0.7%) (1.5%) (3.0%)	 1.86E-32 8.36E-33 3.42E-33 	 (6.9%) (6.8%) (7.1%) 	8.71E-30 2.98E-31 1.22E-31 6.80E-32 3.54E-32 9.51E-33	(6.2%) (6.3%) (5.5%) (5.7%) (5.8%) (9.2%)	

- C/E Results (ENDF/B-VII.1):
 - MC uncertainty ~= 1%

	al27a	ni48p	rh103n	in115n	u238f	np237f	avg	std dev
	0.99	1.00	1.07	1.03		_	1.02	3.7%
	1.00	1.05	1.14	1.06			1.06	5.3%
	1.01	1.06	1.12	1.11			1.08	4.6%
	0.98	1.01	1.06	1.07	1.04	1.08	1.04	3.7%
	0.98	1.03	1.00	1.07	1.04	1.10	1.04	4.4%
	0.99	1.09	0.98	1.09	1.04	1.08	1.04	5.0%
			1.02	1.05	1.05	1.20	1.08	7.6%
avg	0.99	1.04	1.05	1.07	1.04	1.11	1.05	
std dev	1.4%	3.3%	6.1%	2.4%	0.2%	1.1%		4.8%

std

• C/E Results (ENDF/B-VIII.0):

MC uncertainty ~= 1%

	al27a	ni48p	rh103n	in115n	u238f	np237f	avg	std dev
	0.96	0.96	1.04	1.00			0.99	3.9%
	0.95	0.93	1.05	0.97			0.97	5.4%
	0.98	0.95	1.03	1.01			0.99	3.3%
	0.94	0.86	0.94	0.92	0.90	0.97	0.92	4.3%
	0.89	0.83	0.87	0.90	0.87	0.97	0.89	5.3%
	0.88	0.85	0.85	0.90	0.84	0.95	0.88	4.7%
			0.88	0.86	0.84	1.05	0.91	10.5%
avg	0.93	0.90	0.95	0.94	0.86	0.98	0.93	
std dev	4.1%	6.3%	9.3%	5.2%	3.1%	1.3%		6.9%

std

- C/E Results (ENDF/B-VIII.1b1):
 - MC uncertainty ~= 1%

1.02 0.98 1.08 1.01 1.02 4.39 1.05 1.01 1.07 1.06 1.05 2.59 1.03 0.96 1.00 1.01 0.98 1.03 1.00 2.79 1.03 0.96 0.95 1.00 0.98 1.05 0.99 4.09 1.04 1.02 0.93 1.03 0.98 1.03 1.00 4.19 0.96 0.99 0.99 1.13 1.02 7.69 avg 1.02 0.98 1.01 0.98 1.06 1.01		al27a	ni48p	rh103n	in115n	u238f	np237f	avg	std dev
1.05 1.01 1.07 1.06 1.05 2.59 1.03 0.96 1.00 1.01 0.98 1.03 1.00 2.79 1.03 0.96 0.95 1.00 0.98 1.05 0.99 4.09 1.04 1.02 0.93 1.03 0.98 1.03 1.00 4.19 0.96 0.99 0.99 1.13 1.02 7.69 avg 1.02 0.98 1.01 0.98 1.06 1.01		0.97	0.96	1.04	1.00		_	0.99	3.9%
1.03 0.96 1.00 1.01 0.98 1.03 1.00 2.79 1.03 0.96 0.95 1.00 0.98 1.05 0.99 4.09 1.04 1.02 0.93 1.03 0.98 1.03 1.00 4.19 avg 1.02 0.98 1.01 0.98 1.06 1.01		1.02	0.98	1.08	1.01			1.02	4.3%
1.03 0.96 0.95 1.00 0.98 1.05 0.99 4.09 1.04 1.02 0.93 1.03 0.98 1.03 1.00 4.19		1.05	1.01	1.07	1.06			1.05	2.5%
1.04 1.02 0.93 1.03 0.98 1.03 1.00 4.19 0.96 0.99 0.99 1.13 1.02 7.69 avg 1.02 0.98 1.01 0.98 1.06 1.01		1.03	0.96	1.00	1.01	0.98	1.03	1.00	2.7%
avg 1.02 0.98 1.01 0.99 0.99 1.13 1.02 7.69		1.03	0.96	0.95	1.00	0.98	1.05	0.99	4.0%
avg 1.02 0.98 1.01 1.01 0.98 1.06 1.01		1.04	1.02	0.93	1.03	0.98	1.03	1.00	4.1%
				0.96	0.99	0.99	1.13	1.02	7.6%
std dev 2.8% 2.9% 6.4% 2.1% 0.1% 1.0% 4.2%	avg	1.02	0.98	1.01	1.01	0.98	1.06	1.01	
	std dev	2.8%	2.9%	6.4%	2.1%	0.1%	1.0%		4.2%

std

Conclusions

- ENDF/B-VIII.1b1 reduces the magnitude of the differences observed with ENDF/B-VIII.0 as compared to current cross section data.
- PCA comparisons with ENDF/B-VIII.1b1 seem to show better agreement with the measured data than ENDF/B-VII.1 or ENDF/B-VIII.0.

