60 Years

Pu9(n,f) cross section covariances including USU components

Georg Schnabel
Nuclear Data Section
Division of Physical and Chemical Sciences NAPC Department for Nuclear Sciences and Applications

IAEA, Vienna

GMA database
 (maintained within neutron standards project)

- Includes cross sections

$$
\begin{aligned}
& { }^{6} \mathrm{Li}(\mathrm{n}, \mathrm{a}),{ }^{6} \mathrm{Li}(\mathrm{n}, \mathrm{n}),{ }^{10} \mathrm{~B}\left(\mathrm{n}, \mathrm{a}_{0}\right),{ }^{10} \mathrm{~B}\left(\mathrm{n}, \mathrm{a}_{1}\right),{ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{n}),{ }^{197} \mathrm{Au}(\mathrm{n}, \mathrm{~g}), \mathrm{U}(\mathrm{n}, \mathrm{~g}), \\
& \mathrm{U} 5(\mathrm{n}, \mathrm{f}), \mathrm{Pu} 9(\mathrm{n}, \mathrm{f}), \mathrm{U} 8(\mathrm{n}, \mathrm{f}) \\
& + \text { thermal neutron constants and SACS (in }{ }^{252} \mathrm{Cf}(\mathrm{sf}) \text { PFNS }
\end{aligned}
$$

- Measurement types
absolute, shape, ratio, shape ratio, sum of xs, SACS, shape of sums, etc.

1) A.D. Carlson et al, "Evaluation of the Neutron Data Standards", Nuclear Data Sheets 148 (2018)
2) D. Neudecker et al, "Applying a Template of Expected Uncertainties to Updating ${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f})$ Cross-section Covariances in the Neutron Data Standards Database", Nuclear Data Sheets 163 (2020)
3) D. Neudecker, V.G. Pronyaev and L. Snyder, "Including ${ }^{238 U}(n, f) /{ }^{235} U(n, f)$ and ${ }^{239} \mathrm{Pu}(\mathrm{n}, \mathrm{f}) /{ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ NIFFTE fission TPC Cross-sections into the Neutron Data

GMA code

(Generalized Least Squares code)

$$
\begin{aligned}
& \pi\left(\vec{p}_{\text {true }} \mid \vec{\sigma}_{\text {exp }}, M\right) \propto f\left(\vec{\sigma}_{\exp } \mid \vec{p}_{\text {true }}, M\right) \pi\left(\vec{p}_{\text {true }} \mid M\right) \\
& \text { Experimental info: } \\
& \text { multivariate normal } \\
& \text { Linear "model" } \\
& \text { Prior: } \\
& \text { multivariate normal }
\end{aligned}
$$

Optimization
(Iterative GLS)

Ref: W.P. Poenitz, "Data interpretation, objective evaluation procedures and mathematical techniques for the evaluation of energy-dependent ratio, shape and cross section data", Proc. of the Conf. on Nuclear Data Evaluation and Procedures (1981)

Pu9(n,f) evaluation by GMA fit on
 Pu9(n,f)

low evaluated uncertainties => introduction of 1.2\% USU for NDS 2017

Related refs:

1) R. Capote and D. Neudecker, "How accurately we know the standard ${ }^{252 C(f(s)}$ neutron multiplicity", arXiv:1908.00272 (2019)
${ }^{4}$ 2) R. Capote et al, "Unrecognized Sources of Uncertainties (USU) in Experimental Nuclear Data", Nuclear Data Sheets 163 (2020)

Information flow

Information flow

Evaluation scenarios

Definition of energy dependent USU (in a nutshell)

Definition of energy dependent USU (in a nutshell)

Per energy USU uncertainty can be estimated by considering ensembles of USU errors associated with different datasets

Python package gmapy (modernized GMA)

Related ref: G. Schnabel, "Fitting and Analysis Technique for inconsistent nuclear data", Proc. of M\&C, (2017)

But here: Monte Carlo treatment extended to non-linear model

Monte Carlo (Metropolis-Hastings)

Evolution of MCMC chain

traceplot for USU of abs. Pu9(n,f) at 12.5 MeV

Examples of USU posterior histograms

absolute $\mathrm{Pu9}(\mathrm{n}, \mathrm{f})$ at 12.5 MeV

absolute $\mathrm{Pu} 9(\mathrm{n}, \mathrm{f})$ at 7.0 MeV

absolute Pu9(n,f) at 20.0 MeV

Examples of USU uncertainty posterior histograms

Examples of USU posterior histograms

shape $\operatorname{Pu9}(\mathrm{n}, \mathrm{f}) / \mathrm{U}(\mathrm{n}, \mathrm{f})$ at 0.0 MeV

shape $\mathrm{Pu9}(\mathrm{n}, \mathrm{f}) / \mathrm{U} 5(\mathrm{n}, \mathrm{f})$ at 12.5 MeV

shape $\operatorname{Pu9(n,f)~/~U5(n,f)~at~} 7.0 \mathrm{MeV}$

shape $\operatorname{Pu9}(\mathrm{n}, \mathrm{f}) / \mathrm{U} 5(\mathrm{n}, \mathrm{f})$ at 20.0 MeV

MCMC evaluation including USU components

Pu9(n,f) evaluation (red: MC with USU, blue: GLS)

Correlation plots

Pu9(n,f) correlation matrix (GLS result)

Pu9(n,f) correlation matrix (MCMC result with USU)

cor

Summary

- Estimation of Pu9(n,f) covariance matrix using MCMC and incorporating the assumption of unknown USU uncertainties
- Importantly, USU estimation accounts for all uncertainty specifications in the GMA database
- Evaluation performed with Python package gmapy, which is a modernized (yet backward-compatible) version of GMA
- This approach may be used to update the covariance matrices of U5(n,f), U8(n,f), Pu9 (n,f) in the GMA standards database

