A hyperon pair spin-spin correlations at ePIC

Jan Vanek
Brookhaven National Laboratory
eA Study Group
07/11/2023

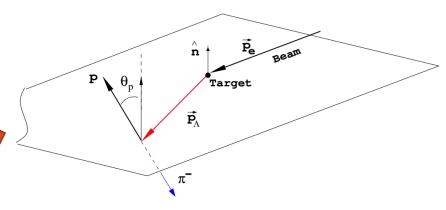
A POLARIZATION PUZZLE

- In the 70's, it was discovered that Λ hyperons are polarized in collisions of unpolarized p+Be collisions, which raised many questions G.Bunce, et al.: Phys.Rev.Lett. 36, 1113-1116 (1976)
- Over nearly 50 years, Λ polarization has been seen in p+p, p+A, e+p, e⁺e⁻ collisions up to collision energies about 40 GeV

 ATLAS: Phys. Rev. D 91, 032004 (2015)
 BELLE: Phys.Rev.Lett. 122, 042001 (2019)

• What is the origin of the Λ polarization?

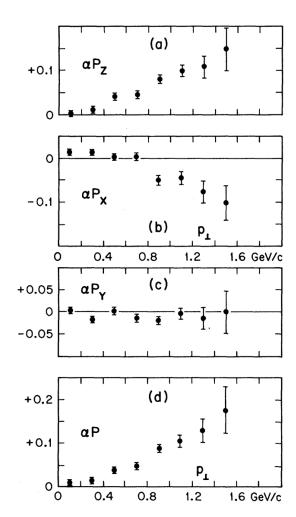
- Does polarization of Λ depend on spin of the target/projectile?
- Is the observed Λ polarization an initial state effect or a final state effect?
- Is there Λ hyperon spin correlation present in high energy collisions? Parton spin correlation and entanglement? W. Gong, et al.: Phys.Rev.D 106 (2022) 3, L031501


STANDARD EXPERIMENTAL METHOD

- Single Λ polarization is measured via $\Lambda^0 \to p\pi^+$ decay channel
 - In Λ rest frame, protons are emitted preferentially in direction of Λ spin
- The distribution of protons in Λ 's rest frame is then given by:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = 1 + \alpha P_{\Lambda}\cos(\theta^*)$$

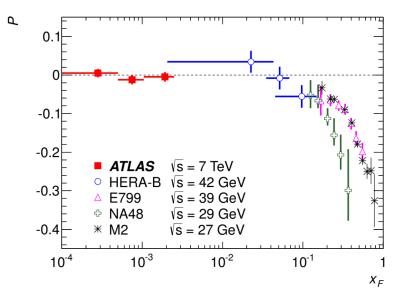
- P_{Λ} is the Λ polarization
- Λ^0 : $\alpha_+ = 0.732 \pm 0.014$, $\overline{\Lambda^0}$: $\alpha_- = -0.758 \pm 0.012$
- \hat{n} is normal vector to the production plane
- Angle $(\theta^*, \text{ or } \theta_p)$ is measured between \hat{n} and momentum of proton (\vec{p}_{Λ}) in Λ 's rest frame



HERMES: Phys.Rev.D76:092008,2007

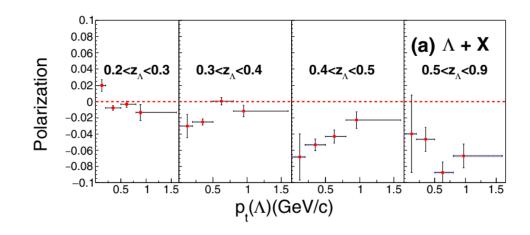
FIRST MEASUREMENT OF A POLARIZATION

• First ever measurement of Λ polarization was performed in Fermilab in p+Be collisions with 300 GeV proton beam in 1976


- Surprising: Neither protons or Be were polarized, but the Λ hyperons were produced polarized
- How can the Λ hyperons be polarized when beam and target are not polarized?

G.Bunce, et al.: Phys.Rev.Lett. 36, 1113-1116 (1976)

OVERVIEW OF A POLARIZATION MEASUREMENTS


- Many measurements of single Λ hyperon polarization over the last 50 years
- Figure: Comparison of Λ hyperon polarization measured in various collision systems and collision energies as a function of x_F
 - Larger polarization with larger $x_F = p_z^{\Lambda}/p_{beam}$
 - No significant dependence on the collision system or energy
 - ATLAS: p+p, HERA: e+p, E799 (Fermilab): p+Be, NA48 (SPS): p+Be, M2 (Fermilab): p+Be
- Single Λ hyperon polarization appears to depend mainly on x_F
 - Λ hyperon which are produced with large momentum along the beam axis are more polarized than those produced in transverse direction

ATLAS: Phys. Rev. D 91, 032004 (2015)

\wedge POLARIZATION IN e^+e^- COLLISIONS

- All previous results are from hadronic collisions
- BELLE observed Λ hyperon polarization also in e^+e^-
 - No quarks or gluons in the initial state
- Observed polarization depends on Λ hyperon p_T and z_{Λ}
 - $z_{\Lambda} = 2E_{\Lambda}/\sqrt{s}$
- Gives access to study contribution of hadronization to the Λ hyperon polarization

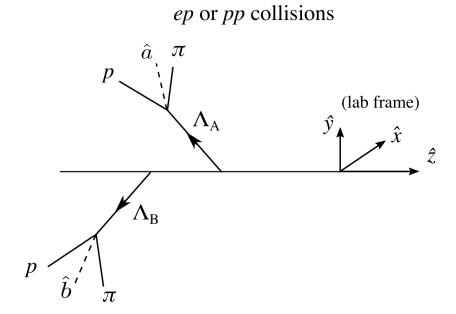
BELLE: Phys.Rev.Lett. 122, 042001 (2019)

A POLARIZATION WITH POLARIZED BEAMS

• Does polarization of Λ and $\overline{\Lambda}$ hyperons depend on the polarization of the particles in the beam?

• Measurement of longitudinal spin transfer $D_{\rm LL}$ to Λ and $\overline{\Lambda}$ hyperons in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV measured by STAR

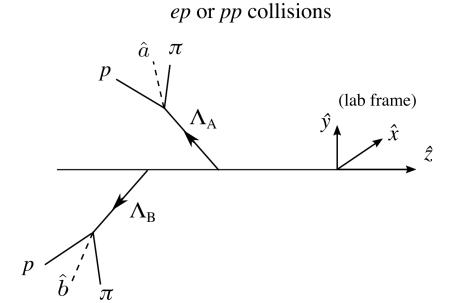
$$D_{LL} \stackrel{\text{\tiny def}}{=} \frac{\sigma_{p^+p\to\Lambda^+X} - \sigma_{p^+p\to\Lambda^-X}}{\sigma_{p^+p\to\Lambda^+X} + \sigma_{p^+p\to\Lambda^-X}}$$


 No significant spin transfer in high energy collisions of longitudinally polarized protons

STAR: Phys. Rev. D 98, 112009 (2018)

MOTIVATION FOR A PAIR SPIN CORRELATIONS

- Single Λ polarization observed in collisions at low energies, but not at higher energies (e.g. RHIC) when measured with respect to production plane
- New, alternative approach is to measure spin correlations of $\Lambda\Lambda$, $\Lambda\Lambda$, and $\Lambda\Lambda$ pairs
 - New choice of reference direction for polarization measurement spin direction of a different Λ ($\overline{\Lambda}$) in the same event
- Similar approach as in measurement of the elliptic flow in heavy-ion collisions using particle correlations instead of reconstruction of the event plane
- Where could correlation of spins of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda}\overline{\Lambda}$ pairs come from in high energy collisions?
 - Initial parton spin correlations may result in final-state hadron spin correlation?
 - Can final-state effect, e.g., hadronization, generate spin correlation?
 - A Bell-type inequality test using Λ hyperon pair spin correlations in high energy collisions? W. Gong, et al.: Phys.Rev.D 106 (2022) 3, L031501



NEW EXPERIMENTAL METHOD

- Find $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda}\overline{\Lambda}$ pair(s) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
- Boost (anti-)proton from decay of the corresponding Λ ($\overline{\Lambda}$) to rest frame of its mother
 - Proton momenta in mother rest frame: \hat{a} , \hat{b}
- Measure angle θ^* between the two **boosted protons**
- The distribution of pair angle is given by:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = 1 + \alpha_1 \alpha_2 P_{\Lambda\Lambda} \cos(\theta^*)$$

• A non-zero $P_{\Lambda\Lambda}$ would indicate spin correlation between the pair

A HYPERON SPIN-SPIN CORRELATIONS AT ePIC

- Ongoing analysis of Λ hyperon spin-spin correlations in p+p collisions at $\sqrt{s}=200$ and 510 GeV measured by the STAR experiment
- Goal is to perform the same analysis within the ePIC simulation framework
- Key steps:
 - Generate e+p sample using PYTHIA 8.3 and pass it through ePIC
 - Analyze produced MC sample using the same experimental method developed for the STAR analysis
 - Estimate e.g. reconstruction efficiency of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda}\overline{\Lambda}$ pairs and expected precision of $P_{\Lambda_1\Lambda_2}$
- Current status:
 - Have base for the PYTHIA simulation
 - Need to make some changes to produce output which can be used with ePIC simulation framework

THANK YOU FOR ATTENTION