Exclusive vector meson J/ψ study using ePIC simulation

Cheuk-Ping Wong¹ and Jihee Kim²

¹<u>cwong1@bnl.gov</u>

²jkim11@bnl.gov

Motivation

- \circ One of golden channels for EIC 2nd detector
 - Study coherent/Incoherent Vector Meson production (ex. J/ψ) to investigate nuclear diffractive pattern inside ion
 - Compare two di-lepton channels of $J/\psi \rightarrow e^+e^-$ and $\mu^+\mu^-$
- **Complementary** to ePIC and **cross-checking**
- More interested in muon channel
 - **Cleaner signal** in quarkonium reconstruction compared to di-electron
 - **Reduce ambiguity** to scattered electrons

Simulation

Event Generator

- Sartre 18×110 GeV coherent $eAu \rightarrow J/\psi(ee)$
- BeAGLE 18×108.4 GeV incoherent $ePb \rightarrow J/\psi(\mu\mu)$

ePIC full simulation framework

- World volume filled with "Air"
- Magnetic field ~ 1.7T
- Tracking based on truth seeding
- Focus on central detector

Input data files used

S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/Sartre/Coherent/sartre_bnonsat_Au_jpsi_ab_eAu_1.hepmc3.tree.root S3/eictest/EPIC/EVGEN/EXCLUSIVE/DIFFRACTIVE_JPSI_ABCONV/BeAGLE/ePb_18x108.41_tau10_B1.1_Jpsi_highstats/ePb_18x108.41_tune3_tau10_B1.1_extracted_Jmu_1.hepmc

Data Selections and Reconstruction

- Muon Detection from di-muon channel
 - Track-based momentum and PID
- \circ Electron Selection from di-electron channel
 - $\circ~$ Use PID to pair opposite di-electron
 - $\circ\,$ If the reconstructed mass is within 2 standard deviations, the e+ and e- are labeled as "J/ ψ decayed" di-electron
 - \circ If $\eta < -1.5$, use ECAL energy instead of momentum from tracking
- Reconstruction
 - $\circ \boldsymbol{Q}^2 = -(e_{beam} e_{scattered}).M2()$
 - o t from method L (estimate scattered ion beam to incorporate beam effect)
 - $_{\odot}~$ Events with $Q^{2}\geq1$ GeV^{2} and J/ψ $|\eta|\leq1.5$

Mass Reconstruction

In di-electron channel, it has asymmetric radiative tail. On the other hand, di-muon channel shows more clean mass distribution with a half of di-electron rms.

○ Cut on $|\eta_{I/\psi}| \le 1.5$

Track-based momentum

- ECAL energy ($|\eta_e| > -1.5$)
- Track-based momentum

J/ψ Reconstruction

 $J/\psi(ee)$

Q² Distribution

Cut on events ($Q^2 < 1$) treated as mis-reconstruction to calculate t

Reduced background at high |t| with the $|\eta_{J/\psi}| < 1.5$ selection

t was calculated using Method L for coherent di-electron channel, not for incoherent di-muon channel

t Resolution

Summary

- Use coherent J/ψ as a golden channel to study the needs of the 2nd EIC detector
- One of the goal is to compare coherent $J/\psi \to e^+e^-$ and $J/\psi \to \mu^+\mu^-$ study
- By focusing on J/Psi within barrel region with coherent di-electron channel, it helps reducing background in higher t, but it is hardly describing diffractive pattern.
- Currently analyzing coherent $J/\psi \rightarrow \mu^+\mu^-$ events to evaluate advantage of using di-muon channels

Next Steps Toward EIC 2nd Detector

Scatter Electrons + Muons

Modify detector setup in simulations Replace ePIC **solenoid** with ATHENA solenoid Replace Hcals with **KLM**

Focus on better detecting scattered electrons' energy/momentum and muon ID

- Tracker improvement + barrel KLM type detector

2nd Focus in IR8

Implemented **IP8 IR** and **Far-forward detector** setup in DD4hep simulations

- Need to work on optimization of detector layout

Focus on **incoherent veto to understand background** and acceptance/detection efficiency

Roman Pots at 2nd focus

Backup Slides

Tracking/Energy Resolution in Backward

14

Tracking/Energy in Central

t Resolution

