ZDC Requirements for *u*-channel Physics at the EIC

Zachary Sweger University of California, Davis

Supported in part by

Backward Tomography at the EIC

Backward Tomography at the EIC

Backward scattering/production

Backward Tomography at the EIC

Backward scattering/production

Backward Tomography at the EIC

u-channel Processes Requiring ZDC

• Omega meson production: $\omega \rightarrow \gamma \gamma \gamma$ Phys. Rev. C 106, 015204 (2022)

u-channel Processes Requiring ZDC

- Omega meson production: $\omega \rightarrow \gamma \gamma \gamma$
- Pion production: $\pi^0 \rightarrow \gamma \gamma$

Phys. Rev. C 106, 015204 (2022)

arXiv:2308.10478

eA Study Group

u-channel Processes Requiring ZDC

- Omega meson production: $\omega \rightarrow \gamma \gamma \gamma$
- Pion production: $\pi^0 \rightarrow \gamma \gamma$
- DVCS: γ

Phys. Rev. C 106, 015204 (2022)

arXiv:2308.10478

u-channel ω in the ZDC

- 18×275 GeV optimizes odds that all three photons are in the ZDC
- 6% acceptance rate for all three assuming approximate ZDC acceptance of η >6.1
- High-energy photons ~100 GeV

u-channel π^0 in the ZDC

- 18×275 GeV optimizes odds that both photons are in the ZDC
- 99% acceptance rate assuming approximate ZDC acceptance of $\eta > 6.1$
- High-energy photons ~20-250 GeV

u-channel DVCS in the ZDC

- 18×275 GeV optimizes odds that the photon are is in the ZDC
- 99% acceptance rate assuming approximate ZDC acceptance of $\eta > 6.1$
- High-energy photons ~20-250 GeV

ZDC Spatial Resolution

- Our spatial resolution needs are determined by the requirement of separating two photons coming from the π^0
- The minimum possible photon separation in any *u*-channel process comes from π^0 production at 18×275 GeV
- This minimum possible separation is 3.4 cm

ZDC Energy Resolution

- Energy resolution needs come from the use of missing energy cuts
- ω production is a background to both backward π^0 and DVCS
- ω and π^0 production are both backgrounds to DVCS
- *u*-channel photons span the range from 0 to 275 GeV
- We especially require excellent high-energy resolution 100-250 GeV

Reducing Background UNIVERSITY OF CALIFORNIA

Reducing Background apply ZDC reconstruction smearing $\Delta E/E \sim (2\% - 5\%)/\sqrt{E} \oplus 1\%$ **Signal DVCS Photon** Pesky π⁰ Background counts scaled **Quick note:** at 18×275 GeV it is rare for one of the π^0 18×275 GeV photons to miss the ZDC, but the π^0 production Xsec $-\pi^0$ 10⁻³< Q^2 <1 GeV² is large. Any marginal improvement on ZDC size to π^0 1<Q²<2 GeV² π^0 2<O²<5 GeV² 10^{3} limit missed photons will greatly improve our chances of rejecting the π^0 background to DVCS 10²

10

-5

E_{missing} smeared (GeV)

10 =

E_{missing} smeared (GeV)

A

10

20

30 E_{missing} smeared (GeV)

Missing energy cuts to collect entire VCS sample

- 5×41 GeV: $E_{\text{missing}} < 1 \text{ GeV} \rightarrow \sim 70\%$ purity
- $10 \times 100 \text{ GeV: } E_{\text{missing}} < 2 \text{ GeV} \rightarrow \sim 80\% \text{ purity}$
- 18×275 GeV: $E_{\text{missing}} < 5$ GeV $\rightarrow -95\%$ purity

This is largely dependent on model cross sections

We can relax the stochastic term to study effect on purity $\Delta E/E \sim (20\%)/\sqrt{E} \oplus 1\%$

Zachary Sweger

We can relax the stochastic term to study effect on purity $\Delta E/E \sim (20\%)/\sqrt{E} \oplus 1\%$

purity at 18×275 GeV is relatively insensitive

Quick Note on Beam Pipe

- With the help of Tyler Hague, I've looked into ePIC simulations for backward π^0 production
- The Monte Carlo photon tracks always terminate in the beam pipe material before reaching the ZDC
- This is under investigation, but it is clear that current beam pipe design is insufficient

eA Study Group

For full presentation to Exclusive/Diffractive/Tagging group:

https://indico.bnl.gov/event/20540/contributions/81537/attachments/50096/85720/UpdateOnBenchamarks.pdf

22

Conclusions

- *u*-channel is key to achieving the full capabilities of nuclear tomography at the EIC
- Here are the ZDC requirements for these channels: **Absolutely necessary:**
 - \Box hit separation resolution > ~ 3cm
 - **G** good high-energy resolution. Effect on π^0 reconstruction needs to be studied

Necessary for detecting DVCS:

Large acceptance, not much smaller than η>6.1... every centimeter helps

Thank you for your attention!

zwsweger@ucdavis.edu

Zachary Sweger

24