

Coherent $J/\psi \rightarrow l^+l^-$ Diffractive Pattern Simulations with the ePIC Detector Setup

Cheuk-Ping Wong [cwong1@bnl.gov]

11-21-2023

Golden Channel

- Coherent $J/\psi \rightarrow l^+l^-$ diffractive pattern
- Exclusive measurements that involve the central, far backward and far forward detector
 - Muon ID
 - Tracking detector $\rightarrow J/\psi$ reconstruction
 - backward Ecal \rightarrow Scattered electron
 - Far forward detector \rightarrow incoherent event vetoing
 - Far backward detector \rightarrow low Q² measurements

Golden Channel

- Coherent $J/\psi \rightarrow l^+l^-$ diffractive pattern
- Exclusive measurements that involve the central, far backward and far forward detector
 - Muon ID
 - Tracking detector $\rightarrow J/\psi$ reconstruction
 - backward Ecal \rightarrow Scattered electron
 - Far forward detector \rightarrow incoherent event vetoing \rightarrow Jihee incoherent event simulations
 - Far backward detector \rightarrow low Q² measurements •

Ping – coherent event simulations

- Improve t resolution
- Implement muon ID smearing
 - - Implement the second focus detector
 - Study incoherent event vetoing efficiency

Simulation Setup

Sartre

- eAu at 18x110 GeV
- $1 \leq Q^2 \leq 1000 \text{ GeV}^2$
- Coherent events only
- Forced $J/\psi \to l^+ l^-$
- No background

Detector Setup

- ePIC-2023.10.0
- epic_craterlake_18x110_Au.xml
- B=1.7 T

Track Selections and Reconstruction

Single lepton selection

- True PID
- If the electron $\eta < -1.5$, use Ecal energy instead of momentum from tracking

J/ψ reconstruction

- |pid| = 11 or 13
- Opposite charges cut on dilepton pair
- If the invariant mass is within 2 standard deviations, the dileptons are labeled as " J/ψ decayed" dileptons

Q^2

- Scattered electrons must be negatively charged
- " J/ψ decayed" electrons are excluded
- $Q^2 = -(e_{beam} e_{scattered}).M2()$

t from method L

- Removed events with a mis-reconstructed $Q^2 < 1 \text{ GeV}^2$
- Reconstructed $J/\psi |\eta| < 1.5$ -> avoid ambiguity between scattered and decayed electrons, and avoid poor tracking region
- Require information of the proton/ion beam
- Better t resolutions

Reconstructed J/ψ

- Larger combinatorial background at lower spectrum due to bremsstrahlung radiation when using dielectron channel
- Better J/ψ efficiency at high p/p_T using dimuon channel

Reconstructed Q²

Brookhaven

National Laboratory

Cheuk-Ping Wong & Jihee Kim

- Using dielectron channel may reduce Q2 efficiency since scattered electron is defined as "not *J*/ψ decayed electron"
- Events with a reconstructed Q² ≤ 1 GeV² are excluded when calculating t

8

Reconstructed t

- Using dimuon channel improves the coherent J/ψ diffractive measurement compared to delectron channel
 - Caveat: still using true PID
- But improvement from using dimuon is not enough
 - \rightarrow Require significant improvement in scattered electron measurements
 - \rightarrow Beyond excellent backward tracking/Ecal with a momentum/energy resolution smaller than 1%

Summary

- First look at the ePIC (craterlake) performance on coherent J/ψ diffractive pattern measurements
- Compared dielectron and dimuon channels
 - Dimuon channel gives better t resolution
 - Caveat: using true PID
 - Still need significant improvement on scattered electron measurements
- To-do list
 - Implement muon ID smear Start with BELLE II KLM performance
 - Improve backward tracking resolution

Backup

Simulation Setup

	Coherent Events	Incoherent Events
Event Generator	Sartre	Beagle (contains fragments of the ion beam)
Collisions	e+Au	e+Pb
Energy	18x100 GeV	18x108 GeV
Forced J/ψ decay	$J/\psi \rightarrow e^+ e^-$ $J/\psi \rightarrow \mu^+ \mu^-$	$J/\psi \rightarrow \mu^+ \mu^-$ (Not reconstructed)
Q ²	$1 - 1000 \text{ GeV}^2$ (Showing results in $1 \le Q^2 \le 10 \text{ GeV}^2$)	$\geq 1 \text{ GeV}^2$
Number of events	1.5-2M events	

No background or noise in simulated events

J/ψ Decayed Dimuon Kinematics

Cheuk-Ping Wong & Jihee Kim

BELLE II KLM Performance

https://docs.belle2.org/record/2895/files/Le pton_identification_Moriond_2022__v2.pdf

https://arxiv.org/pdf/1011.0352.pdf

Implement muon ID smearing Starting with BELLE II KLM performance

- min µ p=0.6 GeV
- Efficiency = 89% for p ≥ 1 GeV
- Fake rate 1.3% for $p \ge 0.7 \text{GeV}$
- Fake rate $\leq 3.8\%$ for $p \leq 0.7 \text{GeV}$

 $0.82 \le \theta < 1.16 \text{ rad}, \text{muonID} > 0.9$