Charged hadron multiplicities inside of jet: Accessing Hadron Entropy?

C-J. Naïm and Z. Tu

Center for Frontiers in Nuclear Science

eA group meeting December 12, 2023

Entropy and Continuum Distribution

Neumann entropy:

$$S = -\sum_{i=1}^{N} (p_i \log p_i) \underset{N \to \infty}{\sim} \log N \underset{N \to \infty}{\longrightarrow} \infty$$

Generalisation to a continuum distribution:

$$S[F] := -\int F(x) \ln F(x) \mathrm{d}x$$

with F(x) can be xf(x) (PDF) or zD(z) (FF).

Barone, Drago and Ma relation PhysRevC.62.062201:

$$D(z)\simeq zf\left(2-rac{1}{z}
ight)\simeq zf(z)$$
 when $z
ightarrow 1$ $(z=rac{1}{1-(1-1/z)}\simeq 2-rac{1}{z}).$

Entropy and Quantum Entanglement

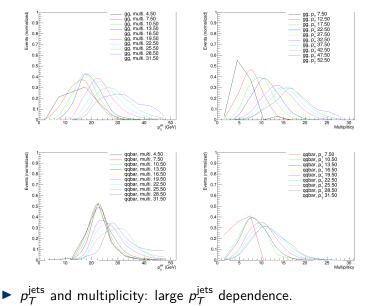
Based on PhysRevD.95.114008:

- Von Neumann Entropy in DIS: Interpreted as the entropy of entanglement between the spatial region probed by Deep Inelastic Scattering and the rest of the proton.
- Entanglement Entropy and Parton Multiplicity: Assuming the hadron multiplicity is proportional to the multiplicity of color-singlet dipoles: relation between the parton structure function and the entropy of produced hadrons.

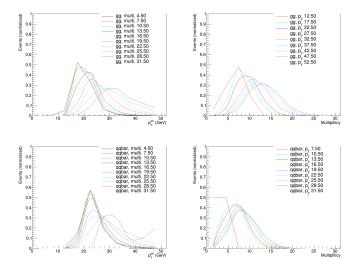
$$S_{\text{partons}} = \ln \left(xg\left(x, Q^2
ight)
ight) \equiv S_{\text{hadrons}}$$

Can we apply the same idea with the FF?

$$S_{hadrons} \stackrel{?}{\equiv} \ln \left(z D \left(z, \mu^2 \right) \right)$$

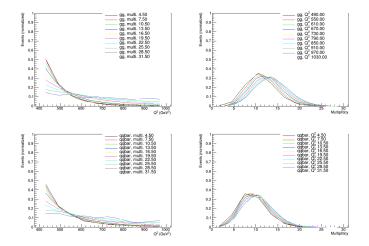

PYTHIA information

- pp collisions
- Hard QCD processes:
 - 1. gg to gg;
 - 2. gg to $q\bar{q}$.
- ► Anti-k_⊥ algorithm;
- Jet information:
 - 1. $R^{\text{Jets}} = 0.4;$
 - 2. p_{\perp}^{Jet} : not cut
- Initial-State Radiation (ISR): on/off
- Final-State Radiation (FSR): on/off

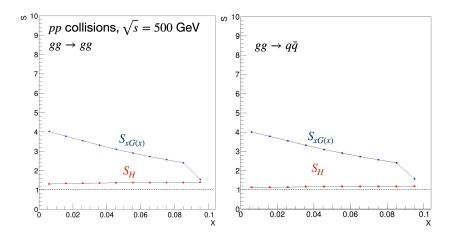

Observable:

Multiplicity: Charged-hadron number inside of jet

Multiplicity in jet - pp collisions at $\sqrt{s} = 500$ GeV ISR and FSR activated



Multiplicity in jet - pp collisions at $\sqrt{s} = 500$ GeV ISR and FSR not activated


 p_T^{Jets} and multiplicity: less multiplicity compare to gg channel.

Multiplicity in jet - pp collisions at $\sqrt{s} = 500$ GeV ISR and FSR not activated

 \triangleright Q^2 and multiplicity: not a large dependence.

xG(x), Multipliticy, and Entropy

• Left: $gg \rightarrow gg$ and Right: $gg \rightarrow q\bar{q}$.

Fragmentation Function and Entropy

Fragmentation function: $f(z) = \frac{1}{z} \cdot (1-z)^a \cdot e^{-\frac{bm_T^2}{z}}$ with *a*, *b* parameters of the Lund symmetric fragmentation function from data fit.

 Calculate the entropy from the FF and compare with the charge-hadron multiplicity.

Conclusion

- We observe a higher hadron multiplicity in $gg \rightarrow gg$ compared to $gg \rightarrow q\bar{q}$.
- The maximum entropy is reached more quickly in $gg
 ightarrow q\bar{q}$.
- Small dependence of multiplicity on Q^2 .
- Disagreement between S_{xGx} and S_H .
- S_{xDz} , work in progress.