
JANA & PODIO Integration:
Status update

Nathan Brei
nbrei@jlab.org

ePIC Software Meeting
March 15, 2023



Moving parts

1. Merge multifactories PR into JANA
2. Cut a new JANA release
3. EICrecon uses new JANA release with USE_PODIO enabled
4. EICrecon PR: Use new PODIO source, processor, factories
5. Update EICrecon to use multifactories, object associations as necessary (this
is where other people can help)

6. PODIO PR: Add type relations and collection visitor

2



Details

1. Merge multifactories into JANA
• These are experimental
• I’d like to test them more before declaring them finished
• If you don’t use them, they shouldn’t affect anything else in JANA
• Making them available to EICrecon now would increase our velocity
• Edge case: PODIO objects that are owned by a another collection

3



Details

2. Cut a new release of JANA
• Necessary because of issue #202: Segfault at program end due to double-free
• We are going to include the experimental multifactory support

3. Update EICrecon dependency to use new JANA release
• We should set USE_PODIO=On
• This will pull in all of the PODIO features but not make them mandatory
• The existing EICrecon PODIO code should continue to run, so this change
should be transparent to the end users

• This involves PRs to eic-spack and eic-container

4



Details

4. EICrecon PR
• This pulls in the new PODIO functionality
• We update the data model glue and replace the event source and processor
• To enable deep PODIO integration in a factory, switch the base class over
from JFactoryT to JFactoryPodioT

• Factories which do not inherit from JFactoryPodioT will probably run just fine,
but their data will not be written to the output file

• However, I expect that using the new JFactoryPodioT will break the old
JEventProcessor, so we should migrate all the factories in one go

• We need to verify that we get the same histograms and data multiplicity
before/after, and run valgrind

5



Details

5. Update EICrecon to use object associations and multifactories
• This is where other people can help
• Do whatever needs to happen for the next production run first
• Object associations follow PODIO idioms exactly
• If you want you can work with PODIO collections directly, though you
shouldn’t have to

• For multifactories, see MultifactoryExample under JANA/src/examples
• Important to manually inspect that associations are intact inside the PODIO
file, and to get a clean bill of health from valgrind. PODIO still has problems
with collection IDs which could cause memory corruption or segfaults (see
issues 379, 381, 382)

6



Details

6. Improve PODIO
• None of these are necessary for the production run
• datamodel_glue.h currently requires a PodioTypeMap<T> template trait in
order to express that Hit is always stored in HitCollection. This should
be a using statement on the Hit class. Fixing this will remove an
unpleasant quirk where the datamodel glue header file always has to be
included before JFactoryPodioT.h and its ilk.

• In order generically insert a Frame full of type-erased PODIO
CollectionBase into a set of typed JFactoryT<T>, we generate a
PodioCollectionVisit helper class which reverses the type-erasure for
all classes in the data model and works with user-defined Visitor classes
similar to std::visit. This is generated in the data model glue but ideally
would be generated by PODIO itself.

7



Thank you! That is all.

7


