IR8 Forward Instrumentation

Wenliang (Bill) Li

March 21, 2023

1

- Official information of IP8
- Forward instrumentation
- Some practical consideration

Official Project Information

- Official Information: https://wiki.bnl.gov/eic-detector-2/index.php?title=Project_Information
 - Contact person: Bamunuvita Gamage (randika@jlab.org)
 - Further optimization is needed! (See example in later slides)

Simulations of coherent diffraction with ⁹⁰Pb

- Diffractive Processes (no color exchange)
 - Dips: "glumpiness" of gluon.
 - Coherent and incoherent: shape of heavy nuclei.

e+A Scattering General Theme

- Scattered electron (e'): $\eta \rightarrow -\infty$, far backward region, low Q² tagger
- **Decayed** $J/\psi \rightarrow e^+e^-$: -1.5< η <3.5, Central detector
- **Recoiled A (A'):** $\eta \sim 6$, far forward region

What does A' do In the Beam Pipe?

- eA Diffractive study, forward detector must:
 - Tag A'
 - Veto events due to neutron evaporation and gamma de-excitation

A' Decay is not all bad !

Neutron Evaporation

• Evaporated neutron energy deposition study by Niseem Magdy, Jia, et. al.

- Evaporated neutron energy deposition study by B. Moran, et. al.
 - See later slide

IP6 vs IP8: almost identify but different

IP6 vs IP8: almost identify but different

IP6:

- 25 mrad e+p crossing angle
- ZDC Acceptance: -4.5 to +5.5

IP8:

- 35 mrad e+p crossing angle
- Second focus
- ZDC Acceptance: +-5 official design
 - potentially +-7

Zero Degree Calorimeter

• ZDC

- Sensitive to soft photon and neutron
- IP6 ZDC +-5mrad acceptance
- IP8 benefit from higher acceptance?

Image by D. Misra, PNNL

In terms of Far Forward Acceptance: B0 is the Key

- The increase to ZDC acceptance from +-5 to +-7 marginally increases the recoil nucleon acceptance:
 - e+p 5x41 GeV pion structure study: 20% increase in terms of nucleon detection efficiency
- Instrumentation of a full calorimeter inside B0 will significantly boost the forward acceptance: from +- 5 mrad to +-28 mrad !
- Due to special constraints, full Calorimeter might be a "no-go"

B0 Calorimeter

Slides borrow from P. Nadel-Turonski

Motivation – overview

- Compensation of the field of the detector solenoid is necessary, and can be done either using a large number of skew quads or an anti-solenoid on each side of the detector, each compensating half the field.
 - Anti-solenoid: solenoid with opposite polarity to the main detector solenoid
 - Skew quad: quadrupole magnet / winding rotated by 45 degrees in azimuth
- The use of an anti-solenoid offers significant benefits for the accelerator and provides additional space behind the small B0 dipole for improved detection in the 5-20 mrad range.
 - An anti-solenoid was part of the original (JLab) IR concept that IR8 is based on
 - The use of an anti-solenoid was encouraged by the DPAP

• An anti-solenoid can fit in the space in front of the ion FFQs (blue), located 7.5 m from the IP.

Off Momentum Tracker

Image by A. Jentsch, BNL

- Roman pot without slits.
- Offsetted to one direction
- Protons tagging:
 - 123.75 < E < 151.25 GeV
 - **45%** < $p_{z,proton} / p \ z, beam$ < 55%
- Tagging decay remnants from Λ or Σ

Roman Pots

• Primary consideration:

 \circ Slit opening 10 σ wider than the beam width.

	Slit width	Slit height
IP6 RP 1&2	8.8 cm	1.2 cm
IP8 1&2	6.2 cm	0.8 cm
IP8 3&4 (2nd focus)	0.7 cm	0.2 cm

Acceptance study by Alex Jentsch, see full study: <u>https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_per</u> <u>formance_10_13_22_v3.pdf</u> 14

In terms of PD acceptance

Simulations of coherent diffraction with ⁹⁰Zr

18x110 e^{90} Zr $\rightarrow e'^{90}$ Zr $+J/\psi^{+}\gamma^{+}X$

- Extended forward photon detection is synergetic with the 2nd focus in IR8.
- ⁹⁰Zr is ideal for benchmarking:
 - The ability to tag A-1 nuclei in the 2nd focus and detect a large fraction of nuclear photons has the potential to significantly improve the suppression of incoherent backgrounds in coherent diffraction.
 - The photon detection will also help to distinguish reactions where the final nucleus was in the ground state or an excited state.
 - The figures on the left show the photons and A-1 fragments from ⁹⁰Zr
 - The figures on the right show the additional suppression at high t from the 2nd focus

Study by M. Baker and others

A Closer Look at the 2nd Focus Area

Ideas: Adding PID? Z-Tagging Mini DIRC Concept (C. Hyde)

IP8: Practical Issues

• Further optimization needs to be done ASAP

IP8 Forward Detector Suggestion

Detector	Acceptance	Requirement
ZDC	θ < 5.5 mrad (η > 6)	35%/√E ~1mm position resolution
RP 1&2	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	
RP 3&4	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	
Off Momentum	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	
B0 tracker + Calorimeter	$5.5 < \theta < 25.0 mrad$ (4.6 < $\eta < 5.9$)	Full Calorimeter
PID at 2nd focus	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	Z tagger photon counter

Thank you for your attention!

