

U.S. MAGNET DEVELOPMENT PROGRAM

Utility Structure Design

Mariusz Juchno, Lucas Brouwer, Diego Arbelaez, Paolo Ferracin, Jose Luis Rudeiros Fernandez, and Giorgio Vallone (for the CCT Team)

2023-03-21

MDP structure design evolution for various goals/constraints

750 mm OD

- CCT5/MDPCT
- Smaller FNAL cryostat (?)
- Octagonal pad due to limited space

Office of

Science

1260 mm OD

- CCT6/SMCT/20T
- Existing LD1 shell
- Vertical split yoke, horizontal split pad due to high (fixed) cool-down pre-load

1030 mm OD

- CCT6/SMCT
- Current LBNL pit, new cryostat
- Vertical split yoke/pad thanks to smaller shell

860 mm OD

- CCT6/SMCT
- Current LBNL cryostat
- Optimized spar thickness and new mandrel material

Compatibility with magnets and test facilities

Office of

Science

- Magnets
 - CCT6
 - 2 layers with a spacer
 - 4 Layers with protective a (split) cylinder
 - SMCT
 - 2 or 4 layers with a spacer
 - Axial preload?
 - Hybrid configurations
- Facilities
 - LBNL at 4.2K
 - Compatible with current cryostat thanks to 860 mm OD
 - FERMILAB at 1.9K
 - With additional magnetic shielding
 - HFVMTF uses two 1 inch thick cylinders made of AISI 1020

Testing facility in B58 not compatible with LD1 shell

. DEPARTMENT OF

ENERGY

Office of

Science

Current facility

- Crane
 - ~10t or 20k lbs
 - Can be used up to 80% without riggers
 - Clearance below the crane 13ft 6in (4.115m)
- The pit
 - ID 53.7" (~1364 mm)
 - DEPTH 162.5" (4127.5 mm)
- The cryostat
 - OD 42" (1066.8 mm)
 - ID 36" (914.4 mm)
 - DEPTH 138" (3505.2 mm)
 - Radial thickness 3"
- Max. magnet dimensions
 - OD 34" (860 mm)
 - Radial separation 1"

Impact of reduced yoke OD

- Mechanical analysis at 13.2 T
 - Current for 1260 mm OD structure
 - 11.8 kA
 - Current for 860 mm OD structure
 - 12.58 kA
 - About 6.6% increase due to reduced iron OD
 - Impact on current margins (1-2 %? TBD)

Short-sample current margin of 30+ % at target operating points

- 30+ % current margin at target fields of 12 T, 4.2 K and 13 T, 1.9 K
- only 1-2% rise of field at conductor in 3D

TABLE IV Short-Sample and Current Margin						
operating point	current (kA)	energy (MJ)	layer pair	conductor field (T)	Iss (kA)	current margin
12 T, 4.2 K	10.1	2.3	1,2 3,4	12.2 10.2	14.4 15.3	30% 34%
13 T, 1.9 K	11.1	2.7	1,2 3,4	13.2 11.1	16.2 16.8	32% 34%

MDP meeting 2022

Mechanical analysis using 3D model

• Geometry

- Detailed model with slots and holes
- Detailed geometry of the mandrel and conductor
- The need of axial pre-load is under investigation
- High number of elements
 - YZ symmetry to reduce element number
 - Coarse mesh
 - Impact of element size studied in 2D
 - Refined mesh calculation still considered
- Results dominated by overlapping solid parts of the mandrel layers
 - Displacement much smaller than in 2D simulation
 - Horizontal key interference reduced from 600 um in 2D model to 50 um in 3D model

Shell and yoke (Stress after cool-down)

Mandrel displacement

Cool-down

Magnetic forces

Mandrel – Von Mises stress

Coil stress – Magnetic forces

Analysis with isotropic cable properties Next step – analysis with orthotropic analysis

Conclusions

- With key parameters of the CCT6 magnet and the Utility Structure fixed, we are ready to proceed with the engineering design
- Structure preload parameters are selected towards 14 T CCT6 standalone and 12T CCT6 with HTS insert (hybrid analysis is ongoing)
- The Utility Structure ID remains compatible with the 4-layer SMCT dimension but the mechanical analysis should be performed before the engineering design is completed
- Results of the 3D mechanical analysis of the CCT6 magnet are dominated by the 3D effect (overlapping solid mandrel and conductor winding regions)
 - Deformation of the mandrel and the stress in the coil are smaller than in 2D analysis. Analysis with orthotropic material properties will be perform to closely investigate pole-region conductor stress.
 - Stiffer mandrel extremities causes an increase of the shell stress to ~490MPa (detailed analysis will be perform wit the help from G. Valone and AUP experience)
- Axial support system is being implemented in the 3D analysis and its effectiveness will be investigated before the engineering design starts

