

Efforts on HTS Modeling and Code Development: Progress, Challenges, Opportunities

Christian Messe March 21st, 2023

Introduction

- Theory Recap
- Motivation
- Project Goals
- Last year's progress
 - Solid Modeling (2D)
 - Thin Shell Modeling (2D)
 - Material Database
- Current work in progress
 - Thermal Coupling
 - Extension to 3D
- Summary and Outlook

Why is HTS modeling so difficult?

- highly nonlinear material laws
 - power law for resistivity
 - critical current and depends on magnetic field and temperature
 - so does the thermal conductivity
- \rightarrow lots of iterations needed for every time step
- → FEM generates ill-conditioned, non positive definite and non-symmetric matrices (=very difficult to solve)

"if solving nonlinear equations is like downhill skiing, solving nonlinear equations for HTS modeling is like skiing the double black diamond trail without poles"

Ohm's Law	Fourier's Law	
e = ho j	$\dot{q} = -k \nabla T$	
$\rho = \frac{e_c}{j_c} \left(\frac{ \boldsymbol{j} }{j_c}\right)^{n-1}$	$k = f(T, \boldsymbol{B})$	
$j_c = f(\boldsymbol{B} , \angle \boldsymbol{B}, T)$	$c_p = f(T)$	

VIPER

Mixed Formulations: a Quick Recap

- gaining significant interest over the last five years!
- goal:
 - improve conditioning for system matrix
 - reduce degrees of freedom
 - \rightarrow faster computation
- basic idea
 - governing equations are domain specific
 - domains are connected over interfaces conditions
- challenges
 - user-friendliness
 - mesh generation and memory management
 - iterating over non-linear material models
 - matrices are difficult to solve
 - (still ill conditioned, non symmetric, non-postive definite)

	Air / Vacuum	Conductor	Ferromagnetic Alloy
Governing Equation	$ abla imes oldsymbol{h} = oldsymbol{0}$ Ampére-Maxwell	$ abla imes oldsymbol{h} = oldsymbol{j}$ Ampére-Maxwell	$ abla imes oldsymbol{e} = oldsymbol{\dot{b}}$ Faraday's Law
Degree of Freedom	$oldsymbol{h}=- abla \phi$ Magnetic Scalar Potential	h Magnetic Field	$m{b} = abla imes m{a}$ Magnetic Vector Potential
Transport Law	none	$e = oldsymbol{ ho} \cdot oldsymbol{j}$ Ohm's Law	$oldsymbol{h} = oldsymbol{v} \cdot oldsymbol{b}$ Magnetic Law
Comment	minimal number of dofs	need edge elements	simple material law implementation

Lagrange Elements

Nédélec Elements

BELFEM: Motivation and Project Goals

- have a custom C++ codebase that
 - can predict quench behavior of HTS
 - \rightarrow coupled electromagnetic-thermal simulation
 - is sufficiently fast
 - \rightarrow uses state of the art h- φ formulation
 - \rightarrow uses state of the art solver libraries
 - \rightarrow uses state of the art parallelization
 - supports complex geometries and current sharing
 - \rightarrow uses state of the art thin shell models
 - \rightarrow need low level access to data structure
 - can handle highly nonlinear material properties
 - \rightarrow custom database
 - \rightarrow using 3D-B-splines to allow smooth derivatives

[Source: 10.1088/1361-6668/abb8c0]

Codebase Requirements & Philosophy

Flexibility & Maintainability

- consistent naming scheme of functions and classes
- lots of comments in code!
- modular structure

• simple MATLAB-like dense linear algebra

• through ARMADILLO or BLAZE

• text based interface tailored to magnet development

• ability to write scripts in BASH and Python

• utilization of community software

- use open source data formats (GMSH, HDF5, Exodus II)
- link against community libraries: MUMPS, PETSc, STRUMPACK, ...

• be open source once mature

• Berkeley Lab specific BSD-3 like license

Last Year's Progress

Solid Formulation Implemented & Validated

n=20

n=100

n=40

n=400

• Mixed Formulation (solids)

- detailed derivation of $h-\Phi$ and h-a forms and element matrices
- · description and improvement of domain interfaces
- proof of concept implementation in 2D
- validation against Biot-Savart + Brandt

• Invited Talk presented at HTS 2022 in Nancy, France

Thin Shell Formulation Implemented & Validated

- Mixed Formulation (thin shells)
 - implementation of Alves-Element in 2D
 - validation against analytical methods + COMSOL / GetDP

• Invited Paper for SuST 2023 (submitted)

- Christian Messe, Berkeley Lab
- Nico Riva, MIT
- Sofia Viarengo, Politechnico di Torino

analytic solution (after Norris) h-formulation (COMSOL) t-a-formulation (COMSOL)

h- ϕ formulation (BELFEM)

140

160

180

120

current amplitude I in A

 \wedge

100

Last Year's progress: Application to Gantry Magnet

- Gantry Magnet Field Quantity Simulation
 - proof of concept for complicated structure (254 individual tapes of BSCCO 2223)
 - highly nonlinear material properties
 - poster presentation at ASC 2022, HI

Misadventures: Application to Gantry Magnet

Challenges

- a-φ interface unstable for highly nonlinear ferromagnet under high magnetic fields
 → current subject of research
- second order implementation oscillates
- \rightarrow considering research project in cooperation with CU Boulder

oscillation with 2nd order model

1

11

Last Year's progress: Material Database

- Material Database
 - can provide properties depending on up to three parameters
 e.g. ρ, jc, cp, k, E, G, α ...
 currently free: Copper, Silver, Hastelloy, ...
 - values precomputed in lookup tables
 → very fast evaluation
 - utilizes B-Splines with up to third order (smooth derivatives!)
 → very suitable for Newton-Raphson and Picard Maneuver
 - stand alone database for use in other codes \rightarrow uses HDF5 as data format
- Coupled against SparseLizard
 - results presented at ASC 2022, HI
 - results published in SuST 2022, Halbach et al. DOI: 10.1109/TASC.2023.3240389
- Consider publishing under open source license
 - \rightarrow interest in the community?

Massachusetts

Institute of

Technology

QUANSCIENT

Last Year's progress: Theory Refinement

- Visiting Professor Frédéric Sirois, Polytechnique Montreal
 - review of current state of the art
 - · discussion of domain interfaces, quench simulation and current sharing
 - frequent meetings with former PhD Students Bruno Alves and Alexandre Arsenault
 - lots and lots of hours in front of the whiteboard!
 - organized a five months visit of PhD student Gregory Giard

E DWERKER OUT FROM POSITIVE CHARKES AND IN TULAND NEGATINE CHARGES, THE TOTAL FLUX OF È THEOREH ANY CLOSED SURFACE IS PROPERTONIAL TO THE CHARGE WERDE

(FARADAY'S (AW) IN A DIRECTION THAT WOULD WAKE A CLARENT THAT WOULD PRODUKE A FIELD TO OPPOSE THE CHANGE IN & FLUX LENZ'S LAW)

CURLS AROUND CHANGING B FIELDS

B NEVER DIVERSES IT JUST LOOPS ARDUND ON ITSELF

> B CURS AROUND CURRENTS AND GUANGES IN E FIELD

Current Work in Progress

Work in Progress: Thermal Coupling

• Extension of Alves-Element with Thermal Model

- each layer is modeled individually using lumped masses
- \rightarrow no mixture rule required
- \rightarrow very stable convergence
- implicit coupling of physical fields
- \rightarrow using STRUMPACK to solve quasi-magneto-static problem
- \rightarrow using PETSc (GMRES) to solve thermal problem
- Gregory Giard (visiting PhD student, Politechnique Montreal)
 - improvement of domain interfaces
 - adaptive relaxation method
 - extension of thermal model to 3D
- Erik Schnaubelt (PhD student at CERN / TU Darmstadt)
 - defining benchmark problems + validation against COMSOL

Work in Progress: Extension to 3D

Goal: Thermal-Magnetostatic Modeling of CORC cables

- proof of concept already demonstrated by Bruno Alves
- implementation of magnetic model in BELFEM
- implementation of lumped mass model for 3D
- improvement of geometry engine
- first thoughts about current sharing
- definition of benchmarks

Office of

Science

DEPARTMENT OF

Benchmark: Lumped Mass Model for Triangles

benchmark

• arbitrary geometry with strong gradients

U.S. MAGNET

PROGRAM

DEVELOPMENT

- goal: prove that lumped mass model works for triangles
- result: very promising!

Summary and Outlook

Summary

- developing a finite-element framework tailored to HTS cable & magnet development needs
- support modern mixed formulations such as h-a and h- $\!\varphi$
- support thin shells & multi-physics (work in progress)
- code designed to run in parallel on HPC node
- writing textbook-like theory manual
- working on a stand alone material database

Outlook

during the next months:

- improve domain interfaces
- complete validation for thin shell implementation for and $h-\phi$
- complete work on TS-quenching

future plans:

- during this year:
- finalize implementation of 3D model (together with Gregory Girard)
- work on geometry-preprocessor for 3D current sharing
- benchmark against simple experiments
- further improvements and code hardening
- streamline workflow for real world applications
- · work on cryogenic fluid database for cooling
- second order thin shells (PhD thesis?)
- publish code under BSD-3-like license

