

REBCO technology – LBNL report and conductor needs

Update the 2021 milestones with today's best estimate

Milestone	Description	Target	
Allb-M3	CORC [®] CCT to reach 5 T dipole field	12/2021	Second half of 2023
Allb-M4	Complete design study of a 8 T REBCO dipole magnet		 12/2022
Allb-M6	REBCO insert to generate 1 T in 8 T field from CCT5	6/2022	• 06/2024
Allb-M8	REBCO magnet to generate 8 T dipole field	3/2023	• 12/2025
Allb M10	Study impact of Lorentz forces on CORC® using ASC's 14 T magnet	6/2021	– Eliminate

William Waterhouse (1902)

BIERERGY Office of Science

U.S. MAGNET DEVELOPMENT PROGRAM

REBCO update - LBNL, MDP CM, 3/1/2022

Office of Science

- C3, Allb-M3
 - Generate 5 T and measure the field quality
 - A 6-layer CCT dipole magnet using CORC[®] wires
 - \circ $\,$ We are practicing with C3a, the 3-turn version of C3 $\,$
- STAR[®] magnet status
 - To keep conductor options open
 - \circ Allb-M6

Office of

- Next magnet toward 8 T dipole field, Allb-M4 / M8
 - Also needed for a hybrid to reach 20 T
 - Magnet options
 - Conductor needs

- ACT plans to deliver the C3 order by October 2023
 - $\circ~$ Received 10 km long HM tapes, ~ 8 km for C3
 - $\,\circ\,$ Start making wires in April 2023
- We survived the growing pains
 - ACT started ordering the C3 tapes in March 2019
 - Specified I_c for the first time: > 350 A at 4.2 K, 6 T
 - SuperPower started delivering in December 2020, 21 months later
 - **o** More on Friday's experience talk

What do we need to make C3 by December 2024?

- Complete the practice with C3a
 - Gain experience in winding, termination, wire performance, diagnostics
 - Assemble in July, test in September 2023
- Make C3 mandrels
 - o 6 layers, \$85 k, 6-month lead time
 - Start machining after July 2023, in case of changes from C3a experience
 - Secure the funding to minimize delay
- Access to key staff
 - $\circ~$ Contract ends in May 2023; working with the lab to keep the door open
 - Significantly reduce the risks of C3 delivery

..., and some good luck

U.S. MAGNET DEVELOPMENT PROGRAM

We expect to test C3a in September 2023

Five down, three to go

Layer	Conductor type	Complete date
1	AP	8/2022
2	AP	9/2022
3	AP	11/2022
4	AP	1/2023
2b	HM	2/2023
5	HM	4/2023
6	AP	5/2023
1b	HM	6/2023

- Assembly procedure works?
- Performance of each layer after assembly?
- Performance of the HM conductor at 4.2 K?

The 3-turn practice provides excellent opportunities to learn

Probe conductor performance Develop coil fabrication procedure

Co-wound v-tap and fiber; Maxim's new sensor in Layer 2 [see his talk on Thursday]

U.S. MAGNET DEVELOPMENT PROGRAM

Layer 1, AP wire, I_c evolution at 20 μ V criterion: 78% retention after winding, 75% retention after stycast

n value for all three cases: 7 – 8

U.S. MAGNET OPMENT PROGRAM

Science

Layer 2, AP wire, I_c evolution at 20 µV criterion: 79% retention after winding, 65% retention after stycast

- Unclear on large I_c degradation after painting Stycast
- Early voltage rise
- *n* value: 18 24

U.S. MAGNET DEVELOPMENT PROGRAM

Layer 2b, HM wire, I_c evolution at 20 μ V criterion: 73% retention after winding, 72% retention after stycast

• Early voltage rise

Evolution of the transport performance for the first five layers

Measured I_c and n value

Office of

ENERG

Layer	Conductor	R _{min} (mm)	Before winding	After winding	After Stycast
1	AP	30	1460 / 8.0	1145 / 7.7	1103 / 7.2
2	AP	35	1588 / 19.1	1250 / 24.0	1035 / 17.8
3	AP	30	1550 / 20.4	1268 / 24.9	1245 / 22.9
4	AP	35	1379 / 10.7	1124 / 13.2	1057 / 12.0
2b	HM	35	908 / 30.7	660 / 28.4	652 / 27.0

 Compared to AP wires, HM wires show 40% lower I_c at 77 K and consistently high n value > 25

Evolution of the transport performance for the first five layers – normalized

$\it I_{\rm c}$ normalized to that before winding

Office of

ENERG

Layer	Conductor	R _{min} (mm)	Before winding	After winding	After Stycast
1	AP	30	100%	78%	76%
2	AP	35	100%	79%	65%
3	AP	30	100%	82%	80%
4	AP	35	100%	82%	77%
2b	HM	35	100%	73%	72%

- AP wires 18% 22% I_c reduction after winding; HM wires show a higher reduction 27%!
- After painting Stycast, typically < 3% reduction; two outliers

Making sense of the data to assess the fabrication procedure

- Start with the field dependence of the wire at 77 K
- Test the wire inside a LN₂ bathtub
 - Bend radius > 100 mm
- Measure the I_c in a background wire field up to 0.5 T
- The transverse field covers several turns of tapes in the wire

Split-pair magnet

$I_{c}(B)$ of the conductors in the first six layers

U.S. MAGNET

PROGRAM

ENER

Science

Office of

ΞN

$I_{c}(B)$ of the conductors in the first six layers – normalized

Suppose the wire has an uniform I_c , what's the impact of self-field after winding?

- We use the field component transverse to the wire axis to determine the expected coil $I_{\rm c}$

Can explain large reduction in Layer 2b; measured *I*_c lower than expected from the self-field effect

Percentage wrt to the $I_{\rm c}$ before winding

Layer	Conductor	R _{min} (mm)	Expected	Measured	Difference
1	AP	30	86%	78%	-8%
2	AP	35	86%	79%	-7%
3	AP	30	87%	82%	-5%
4	AP	35	91%	82%	-9%
2b	HM	35	78%	73%	-5%

- Stronger field dependence in HM wires explains the behavior of Layer 2b
- Can we attribute the difference to degradation due to bending and handling?

AGNET No obvious issue found in the new termination concept RAM at 77 K

- Another enabling contribution from talented staff to address the magnet need
- Working at 77 K with I < 1500 A, consistent behavior from 12 terminations made so far
- Next to measure the high-current performance at 4.2 K
- Shared with FNAL and Kyoto University for further improvement

Winder Mark #2 wound six 3-turn coils without significant issues

- Fewer electrical shorts in recent coils during winding
- Minimize sharp edges in the mandrel to avoid short
- Jury still out for the 40-turn coils
 - Need C3 mandrels to test wind

short winding video

Degradation occurred; still need to be careful when handling the wire

Layer	After winding	After Stycast	Change
1	78%	76%	-2%
2	79%	65%	-14%
3	82%	80%	-2%
4	82%	77%	-5%
2b	73%	72%	-1%

 Difficult to understand why and where the degradation occurred with the voltage-tap signal

U.S. MAGNET DEVELOPMEN PROGRAM

Earlier procedure could have strained the wire

• Wires were constrained in the termination clamps during the Stycast operation and test preparation

• G10 board flexing \rightarrow strained and degraded the wire?

Addressing it following Seinfeld's advice

- Strengthened the G10 board with an aluminum strongback.
 Decouple before cooldown
- Remove the wire from the clamps during the stycast operation
- Layer 2b with the new procedure looks good

"If you're efficient, you're doing it the wrong way. The right way is the hard way." – Jerry Seinfeld. Hope he is right in this case.

Learning how to use fiber to identify the locations of resistive voltage, a question that is still burning

- Heavily influenced by the pioneering SBIR work at Lupine
- Leveraging the lab expertise to learn faster
- Tried fibers with metal coating; did not observe obvious improvement in thermal contact yet
- Focus on the telecom-grade fiber, readily-available, 0.2 mm diameter

Not trivial to apply fiber

Fibers in Layers 3 and 4 recently gave interesting signals

ENERGY Office of

Science

U.S. MAGNET DEVELOPMENT PROGRAM

We interpret the signal as the strain on the wire due to the I x B force. Positive strain = tension on wire

• Hysteresis?

Office of

• Decouple temperature from strain?

Next steps in the fiber work

- Improve fiber installation
 - $\circ~$ Reduce micro-bending in fiber, mold release?
- Seeking the lab resources to address the limitations of the commercial solution for superconducting magnet applications
 - **o Attenuation of light power**
 - Large strain/temperature rate
 - Limited access to data acquisition and processing

Beyond C3 – initial thoughts and conductor needs within next 18 months

- To generate a dipole field of 8 T
 - $\,\circ\,$ A stretch goal beyond 5 T
 - $\,\circ\,$ A stepping stone toward 10 T
 - To generate 5 T in 15 T background, the insert, stand-alone, generates at least 8 T
- Two options
 - **OD < 120 mm, as an insert for CCT6**
 - $\circ~$ ID ~ 150 mm, relevant for a muon collider, 3 TeV c.o.m.

CCT option for the insert and the conductor need

- 6-layer CCT
 - o 45 mm ID, 118 mm OD
- 20 mm minimum bend radius
 - Recently demonstrated by ACT
- At the short-sample limit

Office of

- 7 T stand-alone using the AP wire performance
- $\circ~$ The HM wire can bring it to 8 T
- 4 T in background field of 11 T
- Total wire length 250 m, \$1.2 M o 67% longer than C3 wire length

Engage and push the vendor

150-mm aperture magnets: dipole and combinedfunction magnets for muon collider

CCT dipole

Office of

Science

ΞN

U.S. MAGNET DEVELOPMEN PROGRAM

Dipole-quad combined function

REBCO update – LBNL, MDP CM, 22 March 2023

U.S. MAGNET DEVELOPMENT

Several CCT options to use today's CORC[®] wires to generate 8 T dipole field, at 20 K. But new experience is required

Number of	f layers		4			6	
Number of wir	es per layer	1	2	3	1	2	3
$ TF B_p/B_1 - 1 L R_{min} OP $	T kA ⁻¹ % mH m ⁻¹ mm	0.52 5 11	0.51 2.4 12	0.51 0.5 13 294	0.79 2.2 30 0	0.78 0.4 34	0.77 0.2 40
	T kA MJ m ⁻¹	5.6 10.7 0.6	8.3 16.1 1.6	10.5 20.5 2.8	7.2 9.0 1.2	10.6 13.6 3.1	13.2 17.2 5.8
$\begin{array}{c} B_1(20 \text{ K}) \\ I_{\text{total}}(20 \text{ K}) \\ E(20 \text{ K}) \end{array}$	T kA MJ m ⁻¹	3.8 7.2 0.3	5.6 10.9 0.7	7.1 13.9 1.3	4.8 6.1 0.6	7.2 9.2 1.4	8.9 11.6 2.6
$l_{ m wire}$ $l_{ m tape}$	${ m km}~{ m m}^{-1}$ ${ m km}~{ m m}^{-1}$	0.4 23	0.9 51	1.4 80	0.7 40	1.4 80	2.3 131

- All require a ribbon of 2 3 CORC[®] wires
- Require new experience on magnet fabrication and performance
- Or better wires with a doubled or tripled current

In addition, winding may not be trivial for combinedfunction CCT magnet even with CORC[®] wires

- Combined-function magnets are needed to mitigate neutrino hotspots
- Elegant and also practical?

Pursue subscale models to dovetail a potential dedicated HTS magnet R&D for muon collider

- Can a ribbon-type cable with two CORC[®] wires work?
 - Make and test a 2-layer, 70 mm aperture magnet. 80 m CORC[®]
 AP wires, \$ 320 k

- Can we wind a quadrupole or combined-function windings? What's the bending performance?
 - $\,\circ\,$ Wind and test 3-turn single-layer coils using single CORC® wire
 - Aperture 70 150 mm, 50 100 m CORC[®] AP wires, \$ 200 400 k

- José Luis introduced the intriguing concept yesterday
 - Strong potential for both the insert and stand-alone magnet options

• Would be useful to make a sub-scale model soon to learn

• How much conductor do we need for insert and largeaperture models?

- Next step is S1 magnet, a longer version of <u>s0</u>,
 - 2 layers, 40 turns, 2-wire ribbon cable, 1 2 T dipole field at 4.2 K
 - Can fit inside CCT5 as an insert test
 - **o** 90 m STAR[®] wires ordered, expected delivery in 2023
 - $\circ~$ Work with FNAL to make an anticryostat for the 50 mm aperture
- Driving questions for S1
 - \circ Can we make longer STAR[®] wires with uniform geometry and I_c ?
 - $\circ~$ Can we impregnate the bare STAR $^{\mbox{\tiny B}}$ wires?
 - How does the magnet perform? What further magnet and conductor development is needed?

We study cabling options of STAR[®] wires to keep options of the option open

- Develop 6-around-1 cable toward a magnet conductor
 - **o** Transposed configuration
- Supported by an SBIR Phase II project with AMPeers
 - Leveraging the lab cabling infrastructure and expertise
 - Project will provide 10 m long cable to make a 3-turn magnet within the next 18 months. If successful, an order can follow

U.S. MAGNET DEVELOPMENT PROGRAM

The crystal ball did not work well last year; let's try again

Milestone	Description	Target	
Allb-M3	CORC [®] CCT to reach 5 T dipole field	9/2023	• 12/2024
Allb-M4	Complete design study of a 8 T REBCO dipole magnet		• 6/2024
Allb-M6	REBCO insert to generate 1 T in 8 T field from CCT5		▶ 6/2025
Allb-M8	REBCO magnet to generate 8 T dipole field		• 6/2026

The Crystal Ball by John William Waterhouse (1902)

- C3a is providing excellent learning opportunities on C3 fabrication and conductor behavior
- Immediate needs to make C3
 - Keep the door open for key staff, May 2023
 - Secure \$85 k to machine C3 mandrels, July 2023
 - Complete and test C3a, September 2023
- Get to 8 T is a critical next step, assuming we reach 5 T next year
 - $\circ~$ Secure funding to order wires for the next magnet within 12 months

One final remark on the REBCO Working Group

- The WG is working well
 - We have been meeting biweekly for three years, exchanging latest test results, ideas
 - An effective forum for further collaboration and collective learning
 - We certainly miss the voices of ASC

- Rotating the role of REBCO lead among interested labs
 - Can further enhance the WG and collaboration

