Overview of Global Analysis WG ... developing a "To Do" list

Fred Olness SMU

Thanks for substantial input from my friends & colleagues

SURGE Meeting BNL 28 June 2023

Preparing for the EIC

Physics questions

- Initial conditions: How to parametrize and/or compute initial conditions for the evolution?
- **Small x evolution:** LO evolution is not sufficient for accuracy. Need the NLO and beyond. How to consistently implement resummation in non-linear evolution and match small with large x, relevant for EIC kinematic regime ?
- **Impact factors:** Need impact factors at NLO for accuracy. For many observables analytical and numerical implementations are missing.
- **Spin:** How proton spin emerges from spins and angular orbital momenta of quarks and gluons? What is the contribution of the small x region to the proton spin ?
- Hadronization: How hadronization is affected by the presence of saturated gluons?
- **Global analysis:** Much progress made in increasing accuracy of cross sections in the collinear approach. Need to increase accuracy of predictions based on high energy factorization. 17

Physics questions

- SURGE
- Global analysis: Much progress made in increasing accuracy of cross sections in the collinear approach. Need to increase accuracy of predictions based on high energy factorization.

Observables

Inclusive: structure functions for protons and nuclei, F_2 , F_L also for charm F_2^{c} , inclusive polarized g_1

Less inclusive: dihadron and dijets in pA and ep/eA, photons in pA and ep/eA, polarized SIDIS, hadrons in polarized pp

Diffractive: inclusive diffractive structure functions, exclusive diffractive vector mesons

Many pieces to the puzzle ...

Putting the pieces all together in a unified framework

Enhancing open access research: The SURGE Collaboration will make software developed as part of the proposal, ranging from initial state, small-x evolution, and hadronization implementations, and data used in publications publicly available. This way the SURGE Collaboration will generate a lasting impact on the future of the high energy nuclear physics program in general, and the theory and phenomenology efforts focused on the upcoming EIC specifically.

Topics and working groups

Initial state WG Improve the initial conditions for evolution for unpolarized and polarized observables. Small x evolution + NLO calculations WG Non-linear evolution at NLO and beyond, computation and implementation of impact factors

Spin WG Analyze role saturation in the polarized observables. Elucidate the role of chiral anomaly in small x helicity evolution. Final states WG Construct a framework for hadronization in a saturated environment, including development of MC generator based on CGC calculations

Global analysis WG

To establish saturation, perform comprehensive global analysis quantifying and minimizing uncertainties, extracting universal building blocks of high energy factorization.

Our first "in person" meeting I have more questions than answers Will "float" some directions and plans ... follow up with discussion

... an example for your consideration

... is xFitter the right tool?

Eur. Phys. J. C (2018) 78:621 https://doi.org/10.1140/epjc/s10052-018-6090-8 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Impact of low-x resummation on QCD analysis of HERA data

xFitter Developers' team, Hamed Abdolmaleki¹, Valerio Bertone^{2,3,a}, Daniel Britzger⁴, Stefano Camarda⁵, Amanda Cooper-Sarkar⁶, Francesco Giuli⁶, Alexander Glazov⁷, Aleksander Kusina⁸, Agnieszka Luszczak^{7,9}, Fred Olness¹⁰, Andrey Sapronov¹¹, Pavel Shvydkin¹¹, Katarzyna Wichmann⁷, Oleksandr Zenaiev⁷, Marco Bonvini¹²

www.xFitter.org

Sample data files: LHC: ATLAS, CMS, LHCb Tevatron: CDF, D0 HERA: H1, ZEUS, Combined Fixed Target: ... User Supplied: ...

> extensions include nuclear PDFs

Features & Recent Updates:

Photon PDF & QED Pole & MS-bar masses Profiling and Re-Weighting Heavy Quark Variable Treshold Improvements in χ^2 and correlations TMD PDFs (uPDFs) ... and many other

xFitter 2.2.0 Future Freeze

9

x Fitter

Example

plug in ... BFKL w/ HELL

This can be replace by BK, CGC EFT, JIMWLK, B-JIMWLK, BBGKY, ...

Motivation for Improved Treatment at Small x

Small x (Low Q): need to improve fits NNLO: "fits at NNLO do not improve agreement"

HERAPDF2.0 shows tensions between data and fit, independent of the heavy-flavour scheme used, at low Q^2 , i.e. below $Q^2 = 15 \text{ GeV}^2$, and at high Q^2 , i.e. above $Q^2 = 150 \text{ GeV}^2$. Comparisons between the behaviour of the fits with different Q^2_{min} values indicate that the NLO theory evolves faster than the data towards lower Q^2 and x. Fits at NNLO do not improve the agreement. HERAPDF2.0 NNLO and NLO have a similar fit quality.

next-to-leading logarithmic (NLL) accuracy & next-to-next-to-leading order (NNLO)

Towards parton distribution functions with small-x resummation: HELL 2.0 Marco Bonvini, Simone Marzani, Claudio Muselli JHEP 12 (2017) 117 Small-x resummation from HELL Marco Bonvini, Simone Marzani, Tiziano Peraro Eur. Phys. J. C (2016) 76: 597

12

xFitter Resummation Study

F_L is senstive to Gluon and Small-x Treatments

FOCUS ON BLUON Gluon PDF

... key role in small-x region

Gluon: Nuclear Medium Effects at small momentum fraction (x)

Saturation, BFKL, recombination, ...

Yuri Kovchegov (OSU) MC4EIC: Monte Carlo event simulation for the EIC

Can Saturation be Discovered at EIC?

EIC has an unprecedented small-x reach for DIS on large nuclear targets, allowing to seal the discovery of saturation physics and study of its properties:

Precision Gluon can help study nuclear medium effects

19

nCTEQ: Pit Duwentaster, Michael Klasen, ... $\sqrt{s_{NN}} \left[\text{GeV} \right]$ Observ. No. points Data set Semi-Inclusive PHENIX π^0 200 R_{dAu} 21 $f_{1,i}(x,\mu_i)$ Hadron (SIH) PHENIX η R_{dAu} 12200production PHENIX π^{\pm} 200 R_{dAu} 20PHENIX K^{\pm} $D_k^h(z,\mu_f)$ 200 R_{dAu} 15 $STAR\pi^0$ R_{dAu} 20013 h STAR η 200 R_{dAu} 7 k STAR π^{\pm} 200 R_{dAu} 23ALICE 5 TeV π^0 5020 R_{pPb} 31ALICE 5 TeV η **nCTEQ** 5020 R_{pPb} 16 $f_{2,j}(x,\mu_i)$ ALICE 5 TeV π^{\pm} 5020 R_{pPb} 58 nuclear parton distribution functions ALICE 5 TeV K^{\pm} 5 5020 R_{pPb} 58 ALICE 8 TeV π^0 8160 R_{pPb} 30 Q = 2 GeVALICE 8 TeV η 8160 R_{pPb} 14nCTEQ15+SIH 4 Semi-Inclusive $xg^{Pb}(x)$ Hadron (SIH) production nCTEQ15 **Determines** gluon in small x region 1 nCTEQ15 Pb Q = 2 GeVnCTEQ15SIH Pb With eta data 10^{-1} 10^{-2} Impact of inclusive hadron production data on nuclear gluon PDFs nCTEQ: P. Duwentäster, et al., PRD104 (2021) 094005. X

Possible directions

... moving forward ...

Topics and working groups

Initial state WG Improve the initial conditions for evolution for unpolarized and polarized observables. Small x evolution + NLO calculations WG Non-linear evolution at NLO and beyond, computation and implementation of impact factors

Spin WG Analyze role saturation in the polarized observables. Elucidate the role of chiral anomaly in small x helicity evolution. Final states WG Construct a framework for hadronization in a saturated environment, including development of MC generator based on CGC calculations

Global analysis WG

To establish saturation, perform comprehensive global analysis quantifying and minimizing uncertainties, extracting universal building blocks of high energy factorization.

Our first "in person" meeting

I have more questions than answers

Will "float" some directions and plans ... follow up with discussion

Possible direction ... *for discussion* ...

APPENDIX

- xFitter Material & Examples :
 - Snowmass xFitter reference document
 - Pion PDF & Fragmentation functions
 - Selected example plots
 - ApplGrid Interface (Including Nuclear PDFs)
- Fantomas:
 - Using Bezier curves for PDF parameterization
- xFitter Tutorials:
 - xFitter VirtualBox downloads
 - xFitter Docker & Singularity

Possible direction ... *for discussion* ...

APPENDIX xFitter Resources

xFitter: An Open Source QCD Analysis Framework

A resource and reference document for the Snowmass study (xFitter Collaboration)*

The xFitter Developers' Team:, H. Abdolmaleki, S. Amoroso, V. Bertone, M. Botje, M. Botje, D. Britzger, S. Camarda, A. Cooper-Sarkar, J. Fiaschi, F. Giuli, A. Glazov, A. Glazov, C. Gwenlan, F. Hautmann, H. Jung, A. Kusina, A. Luszczak, T. Mäkelä, T. Mäkelä, I. Novikov, F. Olness, R. Sadykov, P. Starovoitov, M. Sutton, and O. Zenaiev

https://arxiv.org/abs/2206.12465

We provide an overview of the xFitter open-source software package, review the general capabilities of the program, and highlight applications relevant to the Snowmass study. An updated version of the program (2.2.0) is available on CERN GitLab, a and this has been updated to a C++ codebase with enhanced and extended features. We also discuss some of the ongoing and future code developments that may be useful for precision studies. We survey recent analyses performed by the xFitter developers' team including: W and Z production, photon PDFs, Drell-Yan forward-backward asymmetry studies, resummation of small-x contributions, heavy quark production, constraints on the strange PDF, determination of the pion PDF, and determination of the pion Fragmentation Functions. Finally, we briefly summarize selected applications of xFitter in the literature. The xFitter program is a versatile, flexible, modular

xFitter Nuclear Code

Nuclear xFitter: (Daiquiri)

xFitter

Pion Fit

Phys.Rev.D 102 (2020) 1, 014040

DGLAP violation??? saturation resummation QCD QED Pion PDFs bion pDFs pDFs pDFs pDFs pDFs bion p

xFitter

Special thanks to: Ivan Novikov, Alexander Glazov, Oleksandr Zenaiev

Parton Distribution Functions of the Charged Pion Within The xFitter Framework

xFitter Developers' team: Ivan Novikov,^{1,2,} Hamed Abdolmaleki,³ Daniel Britzger,⁴ Amanda Cooper-Sarkar,⁵ Francesco Giuli,⁶ Alexander Glazov,^{2,†} Aleksander Kusina,⁷ Agnieszka Luszczak,⁸ Fred Olness,⁹ Pavel Starovoitov,¹⁰ Mark Sutton,¹¹ and Oleksandr Zenaiev¹²

xFitter: Phys.Rev.D 102 (2020) 1, 014040

xFitter Meson PDFs

xFitter: open-source framework for global fits to meson PDFs

Parton Distribution Functions of the Charged Pion Within The xFitter Framework

xFitter Developers' team: Ivan Novikov,^{1, 2}, Hamed Abdolmaleki,³ Daniel Britzger,⁴ Amanda Cooper-Sarkar,⁵ Francesco Giuli,⁶ Alexander Glazov,², Aleksander Kusina,⁷ Agnieszka Luszczak,⁸ Fred Olness,⁹ Pavel Starovoitov,¹⁰ Mark Sutton,¹¹ and Oleksandr Zenaiev¹²

e-Print: 2002.02902 [hep-ph]

xFitter Pion PDFs

Experimen	$\operatorname{tt} \begin{array}{c} \operatorname{Normalization} \\ \operatorname{uncertainty} \end{array}$	$1 \chi^2 / N_{\rm points}$
E615	$15 \ \%$	206/140
NA10 (194 Ge	eV) 6.4%	107/67
NA10 (286 Ge	eV) 6.4%	95/73
WA70	32%	64/99

$$\begin{aligned} xv(x) &= A_v x^{B_v} (1-x)^{C_v} (1+D_v x^{\alpha}), \\ xS(x) &= A_S x^{B_S} (1-x)^{C_S} / \mathcal{B}(B_S+1, C_S+1), \\ xg(x) &= A_g (C_g+1) (1-x)^{C_g}, \end{aligned}$$

	$\langle xv \rangle$	$\langle xS \rangle$	$\langle xg angle$	$Q^2 \ ({ m GeV}^2)$
JAM 31	0.54 ± 0.01	0.16 ± 0.02	0.30 ± 0.02	1.69
JAM (DY)	0.60 ± 0.01	0.30 ± 0.05	0.10 ± 0.05	1.69
this work	0.55 ± 0.06	0.26 ± 0.15	0.19 ± 0.16	1.69
Lattice-3 18	0.428 ± 0.030			4
SMRS 25	0.47			4
Han et al. 44	0.51 ± 0.03			4
GRVPI1 27	0.39	0.11	0.51	4
Ding et al. 11	0.48 ± 0.03	0.11 ± 0.02	0.41 ± 0.02	4
this work	0.50 ± 0.05	0.25 ± 0.13	0.25 ± 0.13	4
JAM	0.48 ± 0.01	0.17 ± 0.01	0.35 ± 0.02	5
this work	0.49 ± 0.05	0.25 ± 0.12	0.26 ± 0.13	5
Lattice-1 16	0.558 ± 0.166			5.76
Lattice-2 17	0.48 ± 0.04			5.76
this work	0.48 ± 0.05	0.25 ± 0.12	0.27 ± 0.13	5.76
WRH 26	0.434 ± 0.022			27
ChQM-1 13	0.428			27
ChQM-2 15	0.46			27
this work	0.42 ± 0.04	0.25 ± 0.10	0.32 ± 0.10	27
SMRS 25	0.49 ± 0.02			49
this work	0.41 ± 0.04	0.25 ± 0.09	0.34 ± 0.09	49

32

Pion Fragmentation Functions

Phys.Rev.D 104 (2021) 5, 056019

Hamed Abdolmaleki, Maryam Soleymaninia, Hamzeh Khanpour

PHYSICAL REVIEW D 104, 056019 (2021)

QCD analysis of pion fragmentation functions in the xFitter framework

Hamed Abdolmaleki,^{1,*} Maryam Soleymaninia,^{1,†} Hamzeh Khanpour[®],^{1,2,3,‡} Simone Amoroso[®],^{4,§} Francesco Giuli[®],^{5,∥} Alexander Glazov[®],^{4,¶} Agnieszka Luszczak[®],^{6,**} Fredrick Olness[®],^{7,††} and Oleksandr Zenaiev^{8,‡‡} (xFITTER Developers' Team:)

xFitter: Comparisons: ... good overall ... more work needed

HAMED ABDOLMALEKI et al.

PHYS. REV. D 104, 056019 (2021)

34

xFitter Selected Examples

xFitter Capabilities

www.xFitter.org

more xFitter Capabilities

www.xFitter.org

Multiple Heavy Quark Models

Profiling of W/Z Data

NNLx Resummation @ Small x

Correlation Coefficients

Pole & MS-Bar Running Mass

more xFitter Capabilities

www.xFitter.org

DIS inclusive processes in ep

Jet production (ep, pp, ppbar)

Drell-Yan processes (pp, ppbar)

 \rightarrow strange quark density determination

DY data sensitivity to photon PDF

more xFitter Capabilities

Heavy Quark production (*ep*, *pp*, *ppbar*)

Evaluation of modern PDFs (benchmarking)

www.xFitter.org

Top-quark production (*pp, ppbar*)

PDF4LHC report (benchmarking)

xFitter Interface to ApplGrid Grid Technology

special thanks to Mark Sutton

TUTORIALS

VirtualBox & Docker

CTEQ/MCnet School 2016 QCD and Electroweak Phenomenology

6-16 July 2016

DESY, Hamburg

The 2023 CFNS-CTEQ Summer School on the Physics of the Electron-Ion Collider, June 5-16, 2023

Past tutorials and VirtualBox images

https://smu.box.com/s/alwdhtjs16dn23o4j9112oyomea5mog5

All Files > XFITTER > VBOX

NAME 1

2016 Tutorial	2016 CTEQ-DESY School Tutorials
2018 Tutorial 🖉	2018 CTEQ School Tutorials (Based on 2016)
VBox Ubuntu18	VirtualBox with v.2.2
VBox Ubuntu22	VirtualBox with v.2.2 bug: ./bin/xfitter-draw ./outputno-logo
pw: xfitter2023	

JBrandonS / xfitter-do	^{ocker} h	https://github.com/JBrandonS/xfitter-dock					
↔ Code ① Issues ø	(?) Pull requests o	O Actions III Projects	s o 💷 Wiki 🌒 S	ecurity	its		
WIP docker contatiner fea	aturing xFitter						
-0- 14 commits	∲ 1 branch	🗇 O packages	🛇 O releases	🞎 1 contribu	utor	∲ GPL-3.0	
Branich: master - New pull r	request		Create ne	w file Upload files	Find file	Clone or download +	
JBrandonS Updated READ	ME.md			🗸 La	atest commit	b103aaf 10 hours ago	
.gitignore	Added run di	for steering files. Updated F	Readme. Fixed issues w	ith S		5 days ago	
Dockerfile	Handeling PI	Handeling PDF data correctly, Updated readme.				4 days ago	
	Initial commit				7 days ago		
README.md	Updated README.md			10 hours ago			
docker-entrypoint.sh	Handeling PDF data correctly. Updated readme.			4 days ago			
install-xfitter-master	Initial commit				7 days ago		

I README.md

xFitter-Docker

xFitter-Docker is a docker container featuring the latest version of xFitter, from the master branch for the main repo, and as well as many standard HEP software packages needed for processing.

This allows for easy use of an up-to-date xFitter across all systems and configurations.

Installation

Prebuilt images for this project are available in docker-hub under jbrandons/xfitter. You can pull this project from any internet connected PC with

Fred Olness 22 April 2020 xFitter

Brandon Stevenson

Lucas Kotz

DOCKER

```
docker pull jbrandons/xfitter
```

```
docker run -it -u $(id -u ${USER}):$(id -g ${USER}) -v $(pwd):/run
-v /users/olness/xfit/DATA/datafiles:/data
-v /usr/local/share/LHAPDF:/pdfdata jbrandons/xfitter bash
```

xfitter and xfitter-draw are installed in the path, so a plain "xfitter" command should run the test. The -u \$(id -u \${USER}):\$(id -g \${USER}) command mounts as the user instead of root. The -v \$(pwd):/run command mounts the current directory as /run; this is the working directory. The -v /users/olness/xfit/DATA/datafiles:/data command mounts your local set of data files. The -v /usr/local/share/LHAPDF:/pdfdata command mounts your local set of lhapdf files. (This keeps the docker image lightweight) The bash command drops to a bash shell.

In the above example, the **pwd** is mounted at /**run**, so if you place

```
" constants.yaml parameters.yaml steering.txt" locally, you can then run the xfitter example.
```

SINGULARITY

singularity run -B \$(pwd)/datafiles:/data
 -B \$(pwd)/lhafiles:/pdffiles -B \$(pwd):/run
 docker://jbrandons/xfitter bash

* user runs as **non-root**

* **image is mounted read-only** (not a problem)

SETUP: In your working dir \$(pwd) make 2 symlinks:
1) Symlink ./datafiles to your local xFitter data file
2) Symlink ./lhafiles to your local LHAPDF data files

Your **\$pwd** will be mounted to **/run** so you have local access to output Launch singularity; you'll drop into a bash shell. **xfitter** and **xfitter-draw** are in your image path.

In your local working directory, you will need: constants.yaml parameters.yaml steering.txt

Fantomas Project

47/56

Using a Bezier curve for the PDF parameterization in xFitter

Fantômas4QCD: advanced polynomial parametrisations

L. Kotz, M. Chavez, A. Courtoy, P. Nadolsky, F. Olness, V. Purohit, 2023

Parametrize PDFs using **Bézier curves** $B^{(n)}(x;a) = \sum_{k=0}^{n} a_{k+2} {n \choose k} x^k (1-x)^{n-k}$ A metamorph $f(x) \equiv a_0 x^{a_1} (1-x)^{a_2} B^{(n)}(x^{\alpha_x}; a)$

Main idea: New parameterization methods for mesons PDF fits

The new modular xFitter 2.2 version was a HUGE help for this project

1.0

Backup

First analysis of world polarized DIS data with small-x helicity evolution

Jefferson Lab Angular Momentum (JAM) Collaboration

Global analysis: Exploring QCD in extreme limits

Challenge:

- Current PDF analyses use "standard" DGLAP
- Extend analyses into extreme limits of QCD
- Include additional effects into PDF fit

Method:

xFitter: open-source,

modular PDF framework

Goal:

To unequivocally establish saturation, perform comprehensive global analysis quantifying and minimizing uncertainties, extracting universal building blocks of high energy factorization.

Small-x evolution of the gluon GPD E_q

Yoshitaka Hatta^{1, 2} and Jian Zhou³

¹Physics Department, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA ²RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA ³Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier and Interdisciplinary Science, Shandong University (QingDao), 266237, China

We study the small-x evolution equation for the gluon generalized parton distribution (GPD) E_g of the nucleon. It is shown that E_g at vanishing skewness exhibits the Regge behavior identical to the BFKL Pomeron despite its association with nucleon helicity-flip processes. We also consider the effect of gluon saturation and demonstrate that E_g gets saturated in the same way as its helicitynonflip counterpart H_g . Our result has a direct impact on the modeling of E_g as well as the small-xcontribution to nucleon spin sum rules.

Global extraction of unpolarized quark TMDs at N³LL

Alessandro Bacchetta,^{*a,b*} Valerio Bertone,^{*c*} Chiara Bissolotti,^{*a,d*} Giuseppe Bozzi,^{*e,f,**} Matteo Cerutti,^{*a,b*} Fulvio Piacenza,^{*a*} Marco Radici^{*b*} and Andrea Signori^{*g,h*}

Figure 2: *Upper plots:* the TMD PDF of the up quark in a proton at Q = 2 GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|k_{\perp}|$ for x = 0.001, 0.01 and 0.1. *Lower plots:* the TMD FF for an up quark fragmenting into a π^+ at Q = 2 GeV (left panel) and 10 GeV (right panel) as a function of the hadron transverse momentum $|P_{\perp}|$ for z = 0.3 and 0.6. The uncertainty bands in all plots represent the 68%CL.

QCD: From PDFs to the underlying QCD

