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Gluon saturation

• The rapid increase of gluon density: gluon splitting → linear evolution
• Increase should be tamped at a certain point: gluon recombination → 

non-linear evolution
• Gluon saturation (𝑄! < 𝑄"!) at gluon recombination = gluon splitting
• Saturation region is easier to be reached in nuclei: 𝑄" ∝ 𝐴#/%

linear                              nonlinear

!"($)
!&'((/$)

= 𝛼*𝐾+,-.⨂𝑁 𝑥 − 𝛼*𝑁/ 𝑥

Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation
Balitsky-Kovchegov (BK) evolution equation 

How to probe nuclear gluon distributions at saturation region?
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Di-hadron measurement in d+Au
• CGC successfully predicted the strong suppression of the inclusive hadron yields in d+Au relative to p+p by 

gluon saturation effects → nuclear modified fragmentation serves as another interpretation?

• Di-hadron as another observable provides further test, was first proposed by D. Kharzeev, E. Levin and L. 
McLerran from NPA 748 (2005) 627-640

𝑝!" = 1.5 GeV
𝑝!# = 0.2 − 1.5 GeV • Di-hadron in p+p as baseline: 2-to-2 process

• Suppression of away-side peak in d+A relative 
to p+p as a saturation featureObservable: 𝐶 ∆𝜙 = "!"#$(∆1)

"%$#& × ∆1!"#
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Saturation signatures on 𝒑𝑻, 𝒚, 𝒃, 𝑨

varying 𝒚

𝑝!" = 3.5 GeV
𝑝!# = 2.0 GeV

𝑦" = 3.5

C. Marquet, NPA 796, 41 (2007)

𝑝!" = 3.5 GeV
𝑦" = 3.5, 𝑦# = 2.0

varying 𝒑𝑻

C. Marquet, NPA 796, 41 (2007)
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Saturation signatures on 𝒑𝑻, 𝒚, 𝒃, 𝑨

varying 𝒚

𝑝!" = 3.5 GeV
𝑝!# = 2.0 GeV

𝑦" = 3.5

C. Marquet, NPA 796, 41 (2007)

𝑝!" = 3.5 GeV
𝑦" = 3.5, 𝑦# = 2.0

varying 𝒑𝑻

J. L. Albacete et al., PRL 105, 162301 (2010)

varying 𝒃 varying 𝑨

𝑄! ∝ 𝑇" 𝑏 ∝ 1/𝑏 𝑄! ∝ 𝐴#/%

EIC white paper

Increase 𝑸𝒔:
1. More central collisions 
2. Heavier nuclei

C. Marquet, NPA 796, 41 (2007)
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• p+p, p+Al, p+Au and d+Au at 𝑠"" = 200 GeV
• NN → 𝜋7 + 𝜋7 + X, 𝜋7 detected by FMS with 2.6 < 𝜂 < 4.0
• Event activity (E.A.): energy deposition at BBC describes the 

degree of the p(d)+A collisions

• Observable: 𝐶 ∆𝜙 = "!"#$(∆1)
"%$#& × ∆1!"#

, 𝜋89:;7 → higher 𝑝5 𝜋7

Forward Meson Spectrometer (FMS)

𝝅𝟎

𝝅𝟎

Di-𝛑𝟎 measurement at STAR

Beam beam counter (BBC) 
(inner BBC: -5< 𝜂<-3.3 )

2.6 < 𝜂 < 4.0

E.A. in p+Au for example
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𝒑𝑻 and A dependence
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• Suppression observed at low 𝑝5 not high 𝑝5
• In fixed 𝑥 − 𝑄/ phase space, suppression is dominantly 

affected by various 𝐴:
• Suppression linearly depends on 𝐴(/=

STAR, PRL 129, 092501 (2022)

Gaussian (Area and width) at ∆𝜙 = 𝜋 + pedestal
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E.A. dependence
STAR, PRL 129, 092501 (2022)

• Suppression increases with *E.A., highest E.A. 
data is consistent with predictions at 𝑏 = 0; 

• No broadening is observed 

rcBK: J. L. Albacete et al.,PRD 99, 014002 (2019)

*E.A. (event activity): energy deposited in BBC in nuclei-going direction
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How about d+Au?

• DPS is predicted* to be enhanced and not negligible at forward rapidities; different in p+p, p+A and d+A
• Open questions: Two 𝜋7 generated from the same or different hard scattering? DPS affects the correlation? 

a b
c

d

𝝅𝟎

𝝅𝟎

Single parton scattering

a b
c

𝝅𝟎

𝝅𝟎

a' b'

c'

Double parton scattering

*M. Strikman et al., PRD 83, 034029 (2011)

p+p p+A d+A

Two 𝜋7 generated from the same hard scattering

p p p

n
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Di-𝛑𝟎 measurement in d+Au at STAR
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Challenging to conclude the forward di-𝜋7correlation measurement in d+Au
• π7 PID: much higher background in d+Au than p+p/Au; combinatoric contribution is large in d+Au
• Pedestal: much higher in d+Au than p+p/Au; stable in p+p and p+Au

pp, pA: STAR, PRL 129, 092501 (2022)
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E.A./centrality dependence in d+Au?
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• In the overlapping 𝑝5 range of two collaborations, no suppression or E.A./centrality dependence in d+Au relative to p+p
• Suppression observed only at very low 𝑝5 𝑝5>**? = 0.5 − 0.75 GeV/𝑐 at PHENIX, where STAR FMS cannot reach

PHENIX

pp
central dAu
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d+Au at PHENIX
forward-forward: 3.0 < η < 3.8 forward-forward mid-forward:|η|<0.35, 3.0 < η < 3.8

PHENIX, PRL 107, 172301 (2011); PhD thesis

𝐽&' = Area ratio× 𝐑𝐝𝐀

R@A~
/

"'())
, NBC&& = 15.1 for central collisions

Used at STAR R*+~
2

𝑁,-..
Suppression in central dAu compared to pp:
• observed only at very low 𝑝5 𝑝5>**? = 0.5 − 0.75 GeV/𝑐

at PHENIX, where STAR FMS cannot reach
• absent at high 𝑝5 𝑝5>**? = 1.0 − 1.5 GeV/𝑐
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Examples of normalization

∆𝜙 [rad]

Various ways of normalizations, Left: #
/&'()

&/&'()
&∆1

; right: #
/*)(+

&/&'()
&∆1

Left: different normalization from the experiment method
Right: same normalization from the experiment method

1
𝑁 D

>:
9

𝑑𝑁 𝑑∆
𝜙

PLB 784 (2018) 301-306 NPA 908 (2013) 51-72

Experiment: 𝟏
𝑵𝒕𝒓𝒊𝒈

𝒅𝑵𝒑𝒂𝒊𝒓
𝒅∆𝝓
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Normalization summary

Theoretical papers Normalized by Systems Details

NPA 748 (2005) 627-640 𝑁2345 p+p, d+Au 𝑁2345 for entire − "
#
𝜋 < ∆𝜙 < 6

#
𝜋 range

PLB 716 (2012) 430-434 𝑁7548 p+p, d+Au same as experiment, issue with p+p

PLB 784 (2018) 301-306 𝑁2345 p+p, p+Au, d+Au 𝑁2345 for back-to-back region: "
#
𝜋 < ∆𝜙 < 6

#
𝜋

NPA 908 (2013) 51-72 𝑁7548 p+p, p+Au, d+Au same as experiment

𝑁2345 p+p, p+Au, d+Au 𝑁2345 for pedestal

PRL 105, 162301 (2010) 𝑁7548 p+p, d+Au same as experiment

PRD 99, 014002 (2019) 𝑁7548 p+p, p+Au, d+Au same as experiment, compared with STAR data
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STAR 𝑁7548 p+p, p+Al, p+Au, 
d+Au

Compare area ratio

PHENIX 𝑁7548 p+p, d+Au Compare area ratio×RdAu

ATLAS 𝑁7548 p+p, p+pb Compare area ratio

For dAu:
• Complicated normalizations
• Undetermined DPS
• Large background

Di-𝛑𝟎 measurement favors cleaner p+A than d+A collisions. More p+Au data are coming in 2024! 
13

Experiment: 𝟏
𝑵𝒕𝒓𝒊𝒈

𝒅𝑵𝒑𝒂𝒊𝒓
𝒅∆𝝓



Future measurements with STAR Forward Upgrade

Detector pp and pA AA
ECal ~10%/√E ~20%/√E
HCal ~50%/√E+10% ---

Tracking charge separation
photon suppression

0.2<pT<2 GeV/c 
with 20-30% 1/pT

1
2

3
1
2
3

STAR Forward Upgrade: 2.5 < η < 4 

Three new systems:
Forward Silicon Tracker (FST)     
Forward sTGC Tracker (FTT)
Forward Calorimeter System (FCS)

To explore nonlinear gluon dynamics with 
expanded observables beyond 𝛑𝟎𝐬:
• Di-h+/-: access lower 𝑝5 down to 0.2 GeV/c
• Di-jet: 𝑝5

IJ8 > 5 𝐺𝑒𝑉/𝑐 → higher 𝑥 and 𝑄/
• Direct photon: q+g→q+𝛾; statistic driven

Future STAR data with forward upgrade
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Future measurements with STAR Forward Upgrade

Expectation for run 24 pp and pA data with di-hadron:
• high 𝑝5: enough statistic for disappearing suppression
• lowest 𝑝5: largest suppression expected to be observed
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Conditional dijet yields ratio of DKL
DD

is measured:
• rapidity dependence 
• DKL

DD
~0.8 at most forward, less suppression compared to 

STAR dihadron
• 𝑥KL→10MN; but 𝑄/ > ~ 800 𝐺𝑒𝑉/, too high?

ATLAS, PRC 100, 034903 (2019)

Future measurements with STAR Forward Upgrade

Expectation for run 24 pp and pA data with di-hadron:
• high 𝑝5: enough statistic for disappearing suppression
• lowest 𝑝5: largest suppression expected to be observed
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Broadening phenomena

ep simulation: 20×100 GeV
1.0 GeV2 < Q2 < 1.5 GeV2

𝑝$
%&"' > 2 GeV/c

1 GeV/c < 𝑝$())* < 𝑝$
%&"'

• IS: the dominate effect leading to a broad away-side peak
• Considering intrinsic 𝑘5, PS, 𝑝5

O9>;, and detector smearing, 
challenging to observe broadening phenomena

• Future measurement with di-charged hadron: near-side 
peak used to calibrate

• Working on the similar studies in pp collisions

PRD 88, 114020 (2013)PRD 89, 074037 (2014)

𝑃𝑏

𝑃𝑏

𝑝

𝑝

17See elke’s talk on Friday



Summary and outlook

Di-hadron measurements at RHIC provide insights 
into the understanding of nonlinear gluon 
dynamics in nuclei

STAR forward upgrade with expanded observables in p+Au
More opportunities with diffraction measurements 
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Di-hadron measurement favors cleaner p+Au
collisions than d+Au collisions

Nuclear gluon distributions remain largely unconstrained in 
the nonlinear regime: important input from RHIC at low 
and moderate 𝑄/

p+p, p+A results: A, E.A., 𝑝5 dependence

Future measurement with di-charged hadron: further 
understanding of the broadening phenomena
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Back up
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STAR data in 𝒙 − 𝑸𝟐 phase space
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Di-hadron measurements with A
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JLab-12
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R. Abdul Khalek et al., arXiv:2103.05419

STAR data can access linear-nonlinear transition region 

20



Dijet at ATLAS

Conditional dijet yields ratio of DKL
DD

is measured:
• Rapidity dependence 
• DKL

DD
~0.8 at most forward, less suppression 

compared to STAR dihadron
• 𝑥KL→10MN; but 𝑄/ > ~ 800 𝐺𝑒𝑉/, too high?

Width extracted as 𝜎 from the Gaussian fit:
• Remains the same in p+p and p+Pb
• Same conclusion with RHIC dihadron

ATLAS, PRC 100, 034903 (2019)
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Future measurements with STAR Forward Upgrade

Direct photon (-jet): 
• q+g→q+𝛾, sensitive to gluon
• remove finial state effect
• small cross section and background 𝛾

*STAR 2024 p+Au from BUR: 1.3 𝑝𝑏0"

0.45  𝑝𝑏!"

1.76 𝑝𝑏!"∗

Dijet, compared to dihadron:
• helps to select cleaner small 𝑥. channels
• more accurate proxy to di-parton
• can not probe small 𝑝/: 𝑝/

012 > 5 𝐺𝑒𝑉/𝑐

arXiv:1602.03922 di-𝝅𝟎 in 200 GeV p+p

2.6 < 𝜂 < 4.0

dijet in 200 GeV p+p

STA
R

, PR
L 129, 092501 (2022)

STA
R

, PR
D

 98
(2018) 32011
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Di-𝒉$/& simulation: 𝑸𝟐
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Di-𝒉$/& simulation: 𝒙
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• Flow signal from near side is not very 
strong for the current measurement

• p0s at FMS have very high energy; hard to 
require those two p0s to be from different 
jets at near side.

• Due to limited rapidity coverage of FMS, 
it’s harder to accurately estimate long 
range correlation. Even if there is flow, 
centrality dependence is opposite, 
à makes suppression stronger.
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