Gluon Saturation at RHIC

Xiaoxuan Chu, BNL

SURGE Collaboration Meeting and Workshop, June 28th – 30th 2023

Gluon saturation

Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation Balitsky-Kovchegov (BK) evolution equation

- The rapid increase of gluon density: gluon splitting \rightarrow linear evolution
- Increase should be tamped at a certain point: gluon recombination \rightarrow non-linear evolution
- Gluon saturation ($Q^2 < Q_s^2$) at gluon recombination = gluon splitting
- Saturation region is easier to be reached in nuclei: $Q_s \propto A^{1/3}$

How to probe nuclear gluon distributions at saturation region?

Di-hadron measurement in d+Au

- CGC successfully predicted the strong suppression of the inclusive hadron yields in d+Au relative to p+p by gluon saturation effects → nuclear modified fragmentation serves as another interpretation?
- **Di-hadron** as another observable provides further test, was first proposed by D. Kharzeev, E. Levin and L. McLerran from NPA 748 (2005) 627-640

 Suppression of away-side peak in d+A relative to p+p as a saturation feature

Saturation signatures on p_T , y, b, A

Saturation signatures on p_T , y, b, A

Di- π^0 measurement at STAR

p_T and A dependence

- Suppression observed at low p_T not high p_T
- In fixed $x Q^2$ phase space, suppression is dominantly affected by various *A*:
 - Suppression linearly depends on $A^{1/3}$

E.A. dependence

- Suppression increases with *E.A., highest E.A.
 data is consistent with predictions at b = 0;
- No broadening is observed

*E.A. (event activity): energy deposited in BBC in nuclei-going direction

How about d+Au?

- DPS is predicted^{*} to be enhanced and not negligible at forward rapidities; different in p+p, p+A and d+A
- Open questions: Two π^0 generated from the same or different hard scattering? DPS affects the correlation?

$Di-\pi^0$ measurement in d+Au at STAR

Challenging to conclude the forward di- π^0 correlation measurement in d+Au

- π^0 PID: much higher background in d+Au than p+p/Au; combinatoric contribution is large in d+Au
- Pedestal: much higher in d+Au than p+p/Au; stable in p+p and p+Au

E.A./centrality dependence in d+Au?

- In the overlapping p_T range of two collaborations, no suppression or E.A./centrality dependence in d+Au relative to p+p
- Suppression observed only at very low $p_T (p_T^{asso} = 0.5 0.75 \text{ GeV}/c)$ at PHENIX, where STAR FMS cannot reach

d+Au at PHENIX

Suppression in central dAu compared to pp:

- observed only at very low $p_T (p_T^{asso} = 0.5 0.75 \text{ GeV}/c)$ at PHENIX, where STAR FMS cannot reach
- absent at high $p_T (p_T^{asso} = 1.0 1.5 \text{ GeV}/c)$

Examples of normalization

Right: same normalization from the experiment method

Experiment:

Normalization summary

Experimental papers	Normalized by	Systems	Details
STAR	N _{trig}	p+p, p+Al, p+Au, d+Au	Compare area ratio
PHENIX	N_{trig}	p+p, d+Au	Compare area ratio×R _{dAu}
ATLAS	N _{trig}	p+p, p+pb	Compare area ratio

Theoretical papers	Normalized by	Systems	Details
NPA 748 (2005) 627-640	N _{pair}	p+p, d+Au	N_{pair} for entire $-rac{1}{2}\pi < \Delta \phi < rac{3}{2}\pi$ range
PLB 716 (2012) 430-434	N_{trig}	p+p, d+Au	same as experiment, issue with p+p
PLB 784 (2018) 301-306	N _{pair}	p+p, p+Au, d+Au	N_{pair} for back-to-back region: $\frac{1}{2}\pi < \Delta \phi < \frac{3}{2}\pi$
NPA 908 (2013) 51-72	N_{trig}	p+p, p+Au, d+Au	same as experiment
	N_{pair}	p+p, p+Au, d+Au	N _{pair} for pedestal
PRL 105, 162301 (2010)	N _{trig}	p+p, d+Au	same as experiment
PRD 99, 014002 (2019)	N _{trig}	p+p, p+Au, d+Au	same as experiment, compared with STAR data

For dAu:

- Complicated normalizations •
- **Undetermined DPS** ٠
- Large background ٠

 $Di-\pi^0$ measurement favors cleaner p+A than d+A collisions. More p+Au data are coming in 2024!

dN_{pair}

Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~50%/VE+10%	
Tracking	charge separation photon suppression	0.2 <p<sub>T<2 GeV/c with 20-30% 1/p_T</p<sub>

STAR Forward Upgrade: $2.5 < \eta < 4$

Three new systems:

- Forward Silicon Tracker (FST)
 Forward sTGC Tracker (FTT)
- **3** Forward Calorimeter System (FCS)

Future STAR data with forward upgrade			
Year	System	$\sqrt{s} \; (\text{GeV})$	
2023	Au+Au	200	
2024	$p{+}p, p{+}{ m Au}$	200	
2025	Au+Au	200	

To explore nonlinear gluon dynamics with expanded observables beyond $\pi^0 s$:

- Di- $h^{+/-}$: access lower p_T down to 0.2 GeV/c
- Di-jet: $p_T^{jet} > 5 \ GeV/c \rightarrow higher x and Q^2$
- Direct photon: $q+g \rightarrow q+\gamma$; statistic driven

Expectation for run 24 pp and pA data with **di-hadron**:

- high p_T : enough statistic for disappearing suppression
- lowest p_T : largest suppression expected to be observed

Expectation for run 24 pp and pA data with **di-hadron**:

- high p_T : enough statistic for disappearing suppression
- lowest p_T : largest suppression expected to be observed

Conditional **dijet** yields ratio of $\frac{pPb}{nn}$ is measured:

- rapidity dependence
- $\frac{pPb}{pp} \sim 0.8$ at most forward, less suppression compared to STAR dihadron
- $x_{Pb} \rightarrow 10^{-4}$; but $Q^2 > \sim 800 \ GeV^2$, too high?

Broadening phenomena

	Near-side $\Delta \phi$ RMS	Away-side $\Delta \phi$ RMS
k_T	0.21	0.25
$k_T + IS$	0.30	0.72
$k_T + IS + FS$	0.65	0.81
$\frac{k_T + \mathrm{IS} + \mathrm{FS} + p_T^{\mathrm{frag}}}{2}$	1.00	1.00

- IS: the dominate effect leading to a broad away-side peak
- Considering intrinsic k_T , PS, p_T^{frag} , and detector smearing, challenging to observe broadening phenomena
- Future measurement with di-charged hadron: near-side peak used to calibrate
- Working on the similar studies in pp collisions

Summary and outlook

Di-hadron measurements at RHIC provide insights into the understanding of nonlinear gluon dynamics in nuclei

p+p, p+A results: A, E.A., p_T dependence

Di-hadron measurement favors cleaner p+Au collisions than d+Au collisions

Nuclear gluon distributions remain largely unconstrained in the nonlinear regime: important input from RHIC at low and moderate $Q^2\,$

STAR forward upgrade with expanded observables in p+Au More opportunities with diffraction measurements

Future measurement with di-charged hadron: further understanding of the broadening phenomena

Back up

STAR data in $x - Q^2$ phase space

Dijet at ATLAS

Conditional dijet yields ratio of $\frac{pPb}{nn}$ is measured:

- Rapidity dependence
 - $\frac{pPb}{pp}$ ~0.8 at most forward, less suppression compared to STAR dihadron
 - $x_{Pb} \rightarrow 10^{-4}$; but $Q^2 > \sim 800 \ GeV^2$, too high?

Width extracted as σ from the Gaussian fit:

- Remains the same in p+p and p+Pb
- Same conclusion with RHIC dihadron

*STAR 2024 p+Au from BUR: 1.3 pb^{-1}

Dijet, compared to dihadron:

- helps to select cleaner small x₂ channels
- more accurate proxy to di-parton
- can not probe small $p_T: p_T^{jet} > 5 \ GeV/c_{22}$

Di- $h^{+/-}$ simulation: Q^2

counts

23

Di- $h^{+/-}$ simulation: x

×10

10

counts

800 p_T^{trig}=1.5-2.0 GeV/c p_T^{asso}=0.2-0.3 GeV/c

⟨x₁⟩=0.285

10-4

⟨x₁⟩=0.285

10⁻⁴

0.5 (X₂)=0.042

 p_T^{asso} =0.3-0.5 GeV/c

10

 10^{-3}

10⁻²

10⁻²

10⁻¹

10⁻¹

400 (x₂)=0.040

200

0**∟** 10⁻⁵

10-5

Run15 di- π^0

÷.,

Flow-like correlation for FMS $di-\pi^0$

- Flow signal from near side is not very strong for the current measurement
- π^0 s at FMS have very high energy; hard to require those two π^0 s to be from different jets at near side.
- Due to limited rapidity coverage of FMS, it's harder to accurately estimate long range correlation. Even if there is flow, centrality dependence is opposite,
 → makes suppression stronger.