Di-hadron correlation in forward pA collisions at RHIC: how to correctly interpret the results?

Feng Yuan

Lawrence Berkeley National Laboratory
References: Stasto, Xiao, Yuan, PLB 2012;
Stasto, Wei, Xiao, Yuan, PLB 2018; work in progress
Acknowledgement: discussions with Elke and Xiaoxuan

Dijet correiauon at colliders: beautiful data from Tevatron/LHC

CMS, PRL11 3

Two particle correlations as probe to the CGC gluon distributions

■ Dilute + Dense scattering

$$
B+A \rightarrow H_{1}\left(k_{1}\right)+H_{2}\left(k_{2}\right)+X
$$

- Correlation limit:

$$
\left|\vec{k}_{1 \perp}+\vec{k}_{2 \perp}\right| \ll P_{\perp} \quad\left(\vec{k}_{1 \perp}-\vec{k}_{2 \perp}\right) / 2
$$

DIS dijet probes WW gluons

$$
\gamma_{T}^{*} A \rightarrow q\left(k_{1}\right)+\bar{q}\left(k_{2}\right)+X \text { mor } k_{1}
$$

- Hard interaction includes the gluon attachments to both quark and antiquark
- The q_{t} dependence probes the WW gluon distribution at small-x

Dominguez-Marquet-Xiao-Yuan 2011; See Tomasz and Farid's talks

Photon-jet correlation probes the dipole gluon distribution

- Naïve kt-factorization would predict the same q_{t}-dependence

Dijet-correlation at RHIC

- Initial state and/or final state interactions

Boer-Vogelsang 03

Standard (naïve) Factorization breaks!

Becchetta-Bomhof-MuldersPijlman, 04-06
Collins-Qiu 08; Vogelsang-Yuan 08
Rogers-Mulders 10; Xiao-Yuan, 10

Modified factorization

- Dilute system on a dense target, in the large Nc limit,

$$
\begin{aligned}
& \frac{d \sigma^{(p A \rightarrow \text { Dijet }+X)}}{d \mathcal{P} \cdot \mathcal{S} .} \\
& \quad=\sum_{q} x_{1} q\left(x_{1}\right) \frac{\alpha_{s}^{2}}{\hat{s}^{2}}\left[\mathcal{F}_{q g}^{(1)} H_{q g \rightarrow q g}^{(1)}+\mathcal{F}_{q g}^{(2)} H_{q g \rightarrow q g}^{(2)}\right] \\
& \quad+x_{1} g\left(x_{1}\right) \frac{\alpha_{s}^{2}}{\hat{s}^{2}}\left[\mathcal{F}_{g g}^{(1)}\left(H_{g g \rightarrow q \bar{q}}^{(1)}+H_{g g \rightarrow g g}^{(1)}\right)\right. \\
& \left.\quad+\mathcal{F}_{g g}^{(2)}\left(H_{g g \rightarrow q \bar{q}}^{(2)}+H_{g g \rightarrow g g}^{(2)}\right)+\mathcal{F}_{g g}^{(3)} H_{g g \rightarrow g g}^{(3)}\right],
\end{aligned}
$$

- Hard partonic cross section

$$
\begin{aligned}
& H_{q g \rightarrow q g}^{(1)}=\frac{\hat{u}^{2}\left(\hat{s}^{2}+\hat{u}^{2}\right)}{-2 \hat{s} \hat{t^{2}}}, \quad H_{q g \rightarrow q g}^{(2)}=\frac{\hat{s}^{2}\left(\hat{s}^{2}+\hat{u}^{2}\right)}{-2 \hat{s} \hat{u} \hat{t}^{2}} \\
& H_{g g \rightarrow q \bar{q}}^{(1)}=\frac{1}{4 N_{c}} \frac{2\left(\hat{t}^{2}+\hat{u}^{2}\right)^{2}}{\hat{s}^{2} \hat{u} \hat{t}}, \quad H_{g g \rightarrow q \bar{q}}^{(2)}=\frac{1}{4 N_{c}} \frac{4\left(\hat{t}^{2}+\hat{u}^{2}\right)}{\hat{s}^{2}} \\
& H_{g g \rightarrow g g}^{(1)}=\frac{2\left(\hat{t}^{2}+\hat{u}^{2}\right)\left(\hat{s}^{2}-\hat{t} \hat{u}\right)^{2}}{\hat{u}^{2} \hat{t}^{2} \hat{s}^{2}}, \quad H_{g g \rightarrow g g}^{(2)}=\frac{4\left(\hat{s}^{2}-\hat{t} \hat{u}\right)^{2}}{\hat{u} \hat{s^{2}}} \\
& H_{g g \rightarrow g g}^{(3)}=\frac{2\left(\hat{s}^{2}-\hat{t} \hat{u}\right)^{2}}{\hat{u}^{2} \hat{t}^{2}},
\end{aligned}
$$

\square Although the individual diagram depends on the gauge, the total contribution does not

Dominguez-Marquet-Xiao-Yuan 2011

■ Kt-dependent gluon distributions

$$
\begin{aligned}
\mathcal{F}_{q g}^{(1)} & =x G^{(2)}\left(x, q_{\perp}\right), \quad \mathcal{F}_{q g}^{(2)}=\int x G^{(1)}\left(q_{1}\right) \otimes F\left(q_{2}\right), \\
\mathcal{F}_{g g}^{(1)} & =\int x G^{(2)}\left(q_{1}\right) \otimes F\left(q_{2}\right), \quad \mathcal{F}_{g g}^{(2)}=\int \frac{q_{1 \perp} \cdot q_{2 \perp}}{q_{1 \perp}^{2}} x G^{(2)}\left(q_{1}\right) \otimes F\left(q_{2}\right) \\
\mathcal{F}_{g g}^{(3)} & =\int x G^{(1)}\left(q_{1}\right) \otimes F\left(q_{2}\right) \otimes F\left(q_{3}\right),
\end{aligned}
$$

- Color-dipole/CGC agrees with the above results

Dominguez-Marquet-Xiao-Yuan 2011

Various gluon distributions and their contributions to the two particle correlation

Beyond leading order picture: additional dynamics comes in

- BFKL vs Sudakov resummations (LL)

12

Sudakov resummation at small-x

- Take massive scalar particle production $\mathrm{p}+\mathrm{A}->\mathrm{H}+\mathrm{X}$ as an example to demonstrate the double logarithms, and resummation

$$
\begin{gathered}
\frac{d \sigma^{(\mathrm{LO})}}{d y d^{2} k_{\perp}}=\sigma_{0} \int \frac{d^{2} x_{\perp} d^{2} x_{\perp}^{\prime}}{(2 \pi)^{2}} e^{i k_{\perp} \cdot r_{\perp}} x_{0} g_{p}\left(x_{0}\right) S^{(W W)}\left(x_{\perp}, x_{\perp}^{\prime}\right) \\
S_{Y}^{W W}\left(x_{\perp}, y_{\perp}\right)=-\left\langle\operatorname{Tr}\left[\partial_{\perp}^{\beta} U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right) \partial_{\perp}^{\beta} U\left(y_{\perp}\right) U^{\dagger}\left(x_{\perp}\right)\right]\right\rangle_{Y} \\
6 / 28 / 23
\end{gathered}
$$

Explicit one-loop calculations

- Collinear divergence \rightarrow DGLAP evolution

■ Small-x divergence \rightarrow BK-type evolution
Dominguiz-Mueller-Munier-Xiao, 2011

Soft vs Collinear gluons

- Radiated gluon momentum

$$
k_{g}=\alpha_{g} p_{1}+\beta_{g} p_{2}+k_{g \perp},
$$

- Soft gluon, $\alpha \sim \beta \ll 1$
- Collinear gluon, $\alpha \sim 1, \beta \ll 1$
- Small-x collinear gluon, $1-\beta \ll 1, \alpha \rightarrow 0$
\square Rapidity divergence

Final result

- Double logs at one-loop order

$$
\begin{aligned}
\left.\frac{d \sigma^{(\mathrm{LO}+\mathrm{NLO})}}{d y d^{2} k_{\perp}}\right|_{k_{\perp}<Q Q}= & \sigma_{0} \int \frac{d^{2} x_{\perp} d^{2} x_{\perp}^{\prime}}{(2 \pi)^{2}} e^{i k_{\perp} \cdot r_{\perp}} S_{Y=\ln 1 / x_{a}}^{W W}\left(x_{\perp}, x_{\perp}^{\prime}\right) x g_{p}\left(x, \mu^{2}=\frac{c_{0}^{2}}{r_{\perp}^{2}}\right) \\
& \left\{1+\frac{\alpha_{s}}{\pi} C_{A}\left[\beta_{0} \ln \frac{Q^{2} r_{\perp}^{2}}{c_{0}^{2}}-\frac{1}{2}\left(\ln \frac{Q^{2} r_{\perp}^{2}}{c_{0}^{2}}\right)^{2}+\frac{\pi^{2}}{2}\right]\right\}
\end{aligned}
$$

- Collins-Soper-Sterman resummation (NLL)

$$
\begin{aligned}
\left.\frac{d \sigma^{\text {(resum) }}}{d y d^{2} k_{\perp}}\right|_{k_{\perp} \ll Q}= & \sigma_{0} \int \frac{d^{2} x_{\perp} d^{2} x_{\perp}^{\prime}}{(2 \pi)^{2}} e^{i k_{\perp} \cdot r_{\perp}} e^{-\mathcal{S}_{s u d}\left(Q^{2}, r_{\perp}^{2}\right)} S_{Y=\ln 1 / x_{a}}^{W W}\left(x_{\perp}, x_{\perp}^{\prime}\right) \\
& \times x g_{p}\left(x, \mu^{2}=c_{0}^{2} / r_{\perp}^{2}\right)\left[1+\frac{\alpha_{s}}{\pi} \frac{\pi^{2}}{2} N_{c}\right]
\end{aligned}
$$

Sudakov resummation in CGC: other examples

- Dijet production in DIS (NLL)
\square Caucal-Salazar-Schenke-Venugopalan 2022, 2023
\square Paels-Altinoluk-Beuf-Marquet 2022
- Sudakov logs can be re-summed consistently in the small-x formalism
- Kinematics of Sudakov logs and small-x evolution are well separated
\square Soft vs collinear gluons

Extend to dijet in hadronic processes: count the leading double logs

- Each incoming parton contributes to a half of the associated color factor
\square Initial gluon radiation, aka, TMDs
- Soft gluon radiation in collinear calculation also demonstrates this rule
\square Sterman, et al
\square Sub-leading logs will be much complicated, usually a matrix form

Beyond the leading double logs: collinear

$■$ Jet size-dependence is computed by averaging the azimuthal angle between the soft gluon and leading jet
■ Matrix form due to colored final state Kidonakis-Sterman 1997

$$
\begin{aligned}
& x_{1} f_{a}\left(x_{1}, \mu=b_{0} / b_{\perp}\right) x_{2} f_{b}\left(x_{2}, \mu=b_{0} / b_{\perp}\right) e^{-S_{\mathrm{Sud}}\left(Q^{2}, b_{\perp}\right)} \\
& \operatorname{Tr}\left[\mathbf{H}_{a b \rightarrow c d} \exp \left[-\int_{b_{0} / b_{\perp}}^{Q} \frac{d \mu}{\mu} \gamma^{s \dagger}\right] \mathbf{S}_{a b \rightarrow c d} \exp \left[-\int_{b_{0} / b_{\perp}}^{Q} \frac{d \mu}{\mu} \gamma^{s}\right]\right]
\end{aligned}
$$

(Sun, C.-P. Yuan, F. Yuan, PRL 2014)

$$
S_{\mathrm{Sud}}\left(Q^{2}, b_{\perp}\right)=\int_{b_{0}^{2} / b_{\perp}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}}\left[\ln \left(\frac{Q^{2}}{\mu^{2}}\right) A+B+D_{1} \ln \frac{Q^{2}}{P_{T}^{2} R_{1}^{2}}+D_{2} \ln \frac{Q^{2}}{P_{T}^{2} R_{2}^{2}}\right]
$$

D: color-factor for the jet
䀦: jet size

Compare to the full calculations

$$
\frac{\alpha_{s}}{2 \pi^{2}} \frac{1}{q_{\perp}^{2}} \sum_{a b, a^{\prime} b^{\prime}} \sigma_{0} \int \frac{d x_{1}^{\prime}}{x_{1}^{\prime}} \frac{d x_{2}^{\prime}}{x_{2}^{\prime}} x_{1}^{\prime} f_{a}\left(x_{1}^{\prime}, \mu\right) x_{2}^{\prime} f_{b}\left(x_{2}^{\prime}, \mu\right)
$$

$$
\times\left\{h _ { a ^ { \prime } b ^ { \prime } \rightarrow c d } ^ { (0) } \left[\xi_{1} \mathcal{P}_{a^{\prime} / a}\left(\xi_{1}\right) \delta\left(1-\xi_{2}\right)+\xi_{2} \mathcal{P}_{b^{\prime} / b}\left(\xi_{2}\right) \delta\left(1-\xi_{1}\right)\right.\right.
$$

$$
\left.+\delta\left(1-\xi_{1}\right) \delta\left(1-\xi_{2}\right) \delta_{a a^{\prime}} \delta_{b b^{\prime}}\left(\left(C_{a}+C_{b}\right) \ln \frac{Q^{2}}{q_{\perp}^{2}}+C_{c} \ln \frac{1}{R_{1}^{2}}+C_{d} \ln \frac{1}{R_{2}^{2}}\right)\right]
$$

$$
\left.+\delta\left(1-\xi_{1}\right) \delta\left(1-\xi_{2}\right) \delta_{a a^{\prime}} \delta_{b b^{\prime}} \Gamma_{s n}^{a b \rightarrow c d}\right\}
$$

full LO: Nagy 2002, NLOJET++
6/28/23

Compare to the data

 レוとレ゙とレ

NLL Resummation： Sun，C．P．Yuan，F．Yuan，PRL2014
$x_{1} f_{a}\left(x_{1}, \mu=b_{0} / b_{\perp}\right) x_{2} f_{b}\left(x_{2}, \mu=b_{0} / b_{\perp}\right) e^{-S_{\mathrm{Sud}}\left(Q^{2}, b_{\perp}\right)}$ $\operatorname{Tr}\left[\mathbf{H}_{a b \rightarrow c d} \exp \left[-\int_{b_{0} / b_{\perp}}^{Q} \frac{d \mu}{\mu} \gamma^{s \dagger}\right] \mathbf{S}_{a b \rightarrow c d} \exp \left[-\int_{b_{0} / b_{\perp}}^{Q} \frac{d \mu}{\mu} \gamma^{s}\right]\right]$

Full NLO：Nagy 2002，NLOJET＋＋

Include Sudakov effects in the CGC for di-hadron correlations

- Unintegrated gluon distributions w/ Sudakov, e.g.,

$$
\mathcal{F}_{q g}^{(a)}\left(x_{g}, q_{\perp}\right)=\frac{-N_{c} S_{\perp}}{2 \pi^{2} \alpha_{s}} \int_{0}^{\infty} \frac{b_{\perp} d b_{\perp}}{2 \pi} J_{0}\left(q_{\perp} b_{\perp}\right) e^{-S_{\mathrm{Sud}}^{q+g \rightarrow q+g}\left(b_{\perp}\right)} \nabla_{b_{\perp}}^{2} S_{x_{g}}\left(b_{\perp}\right)
$$

Real data teach us more on the physics

- Compare pp to pA

STAR Coll., PRL 2022, arXiv:2111.10396

Simple extraction of nuclear suppression indicates a Pt-broadening effects

- Suppression factor depends on the background subtraction
\square STAR fit: constant

- Pt-broadening is not as profound as our previous predictions
\square It may change if different background subtraction used

Looking forward

- We need more data
\square Cross check the background! E.g., through charged particle pairs, mixed pairs etc., and photon+hadron correlations
- We need theory developments
\square Complete NLL resummation for dijet in hadronic collisions in CGC (collinear framework done)
\square Need BK-JIMWLK evolution for all different UGDs, at least qualitatively

Photon-Jet correlation

- Leading order

Dipole gluon distribution

BK-evolution

6/28/23

Soft gluon radiation

(c)

(d)

- A^{2} from (a, b) contribute to $C_{F} / 2$ (jet)
- A^{2} from (c, d) contribute to C_{F}

■ Interference contribute to $1 / 2 \mathrm{Nc}$

Di-jet correlations in pA

- Effective kt-factorization

$$
\begin{aligned}
& \frac{d \sigma^{(p A \rightarrow \mathrm{Dijet}+X)}}{d \mathcal{P} \cdot \mathcal{S}} \\
& \quad=\sum_{q} x_{1} q\left(x_{1}\right) \frac{\alpha_{s}^{2}}{\hat{s}^{2}}\left[\mathcal{F}_{q g}^{(1)} H_{q g \rightarrow q g}^{(1)}+\mathcal{F}_{q g}^{(2)} H_{q g \rightarrow q g}^{(2)}\right] \\
& \quad+x_{1} g\left(x_{1}\right) \frac{\alpha_{s}^{2}}{\hat{s}^{2}}\left[\mathcal{F}_{g g}^{(1)}\left(H_{g g \rightarrow q \bar{q}}^{(1)}+H_{g g \rightarrow g g}^{(1)}\right)\right. \\
& \left.\quad+\mathcal{F}_{g g}^{(2)}\left(H_{g g \rightarrow q \bar{q}}^{(2)}+H_{g g \rightarrow g g}^{(2)}\right)+\mathcal{F}_{g g}^{(3)} H_{g g \rightarrow g g}^{(3)}\right]
\end{aligned}
$$

$g 9 \rightarrow q q$

- $\left|A_{A}\right|^{2} \rightarrow \mathrm{C}_{\mathrm{A}},\left|\mathrm{A}_{2}\right|^{2} \rightarrow \mathrm{C}_{\mathrm{F}} / 2,\left|\mathrm{~A}_{3}\right|^{2} \rightarrow \mathrm{C}_{\mathrm{F}} / 2$
- $2 \mathrm{~A}_{1}{ }^{*}\left(\mathrm{~A}_{2}+\mathrm{A}_{3}\right) \rightarrow-\mathrm{Nc} / 2$
- $2 \mathrm{~A}_{2}{ }^{*} \mathrm{~A}_{3}, 1 / \mathrm{Nc}$ suppressed

$q 9 \rightarrow q 9$

$$
\longmapsto\left(-\frac{\alpha_{s}}{2 \pi} \frac{C_{F}+C_{A}}{2}\right) \ln ^{2}\left(\frac{Q^{2}\left(x_{\perp}-y_{\perp}\right)^{2}}{c_{0}^{2}}\right)
$$

- $\left|A_{1}\right|^{2} \rightarrow C_{F},\left|A_{2}\right|^{2} \rightarrow C_{F} / 2,\left|A_{3}\right|^{2} \rightarrow C_{A} / 2$
$-2 A_{3}{ }^{*}\left(A_{1}+A_{2}\right) \rightarrow-\mathrm{Nc} / 2$
- $2 \mathrm{~A}_{1}{ }^{*} \mathrm{~A}_{2}$, large Nc suppressed

$g 9 \rightarrow g 9$

$$
\longmapsto\left(-\frac{\alpha_{s}}{2 \pi} N_{c}\right) \ln ^{2}\left(\frac{Q^{2}\left(x_{\perp}-y_{\perp}\right)^{2}}{c_{0}^{2}}\right)
$$

- $\left|\mathrm{A}_{1}\right|^{2} \rightarrow \mathrm{C}_{\mathrm{A}},\left|\mathrm{A}_{2}\right|^{2} \rightarrow \mathrm{C}_{\mathrm{A}} / 2,\left|\mathrm{~A}_{3}\right|^{2} \rightarrow \mathrm{C}_{\mathrm{A}} / 2$
- $2 \mathrm{~A}_{1}{ }^{*}\left(\mathrm{~A}_{2}+\mathrm{A}_{3}\right)+2 \mathrm{~A}_{2}{ }^{*} \mathrm{~A}_{3} \rightarrow-\mathrm{Nc}$

