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Dijet correlation at colliders: beautiful data 
from Tevatron/LHC  

6/28/23 3CMS, PRL11D0, PRL05



Two particle correlations as probe to the 
CGC gluon distributions
n Dilute + Dense scattering

n Correlation limit:
                          à
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DIS dijet probes WW gluons

n Hard interaction includes the gluon attachments to 
both quark and antiquark

n The qt dependence probes the WW gluon 
distribution at small-x
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Dominguez-Marquet-Xiao-Yuan 2011;
See Tomasz and Farid’s talks



Photon-jet correlation probes the dipole 
gluon distribution

n Naïve kt-factorization would predict the same 
qt-dependence
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n Initial state and/or final state interactions

Dijet-correlation at RHIC

Boer-Vogelsang 03
Jet 1

Jet 2

P,ST

Standard (naïve) Factorization breaks!
Becchetta-Bomhof-Mulders-
Pijlman, 04-06
Collins-Qiu 08; Vogelsang-Yuan 08
Rogers-Mulders 10; Xiao-Yuan, 10



Modified factorization
n Dilute system on a dense target, in the large Nc 

limit,
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Dominguez-Marquet-Xiao-Yuan 2011



n Hard partonic cross section

¨Although the individual diagram depends on the gauge, 
the total contribution does not
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Dominguez-Marquet-Xiao-Yuan 2011



n Kt-dependent gluon distributions

n Color-dipole/CGC agrees with the above results
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Dominguez-Marquet-Xiao-Yuan 2011



Various gluon distributions and their 
contributions to the two particle correlation
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Beyond leading order picture: additional 
dynamics comes in

n BFKL vs Sudakov resummations (LL)
12
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Sudakov resummation at small-x
n Take massive scalar particle production p+A->H+X 

as an example to demonstrate the double 
logarithms, and resummation
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p1 H,MH

WW-gluon distribution

Ap2



Explicit one-loop calculations
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n Collinear divergence è DGLAP evolution
n Small-x divergence è BK-type evolution

Dominguiz-Mueller-Munier-Xiao, 2011



Soft vs Collinear gluons

n Radiated gluon momentum

n Soft gluon, α~β<<1
n Collinear gluon, α~1, β<<1
n Small-x collinear gluon, 1-β<<1, αà0

¨Rapidity divergence
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Abstract
To be written...

I. INTRODUCTION

II. GENERAL STRUCTURE OF SOFT GLUON RADIATION FOR TWO PAR-
TICLE PRODUCTION

In Ref. [], the collinear gluon radiation in dijet production has been analyzed, and it
was found that the gluon radiation at one-loop order can be written into the collinear
splitting function of the incoming parton distributions. In this paper, we will study the
gluon radiation in the soft momentum region, and focus on the leading double logarithmic
contribution. In addition, we work in the center of mass frame of the incoming two particles.
The soft gluon momentum can be parameterized by

kg = �gp1 + ⇥gp2 + kg� , (1)

where � and ⇥ are momentum fractions of the incoming partons carried by the radiated
gluon. Soft gluon radiation corresponds to the kinematics: kg� ⇤ �gp1 ⇤ ⇥gp2. Therefore,
we will take the limit of �g, ⇥g ⌅ 1.

All of the results in this section has been well studied in the literature, in particular, in a
series papers by G. Sterman et al., in the context of threshold resummation. Although the
detailed resummation formalism is di�erent, the soft gluon radiation share some common
features between transverse momentum resummation and the threshold resummation. The
soft gluon radiation is an example.

A. Eikonal Approximation

Eikonal approximation is the basic tool to obtain the leading contributions in the collinear
factorization calculation. For soft gluon radiations, we can apply the leading power expan-
sion and derive the dominant contribution by the Eikonal approximation. We listed these
rules in Fig. 1. For our convenience, we also choose the physical polarization of the radiated
gluon along p2: ⇤(kg) · p2 = 0. This will simplify the derivation, and in particular, we do not
need to consider the gluon radiation from the gluon line from the nucleus, which is consistent
with the small-x calculations.

For outgoing quark line, we have

2km
1 u

2k1 · kg + i⇤
, (2)

where k1 for the outgoing quark momentum. For the antiquark, we have

� 2kµ
2

2k2 · kg + i⇤
, (3)

where k2 for outgoing antiquark. We notice that the above also hold for massive quark lines.
The only di�erence is that k2

1 = m2
q, instead of k2

1 = 0 for massless case For incoming gluon

2



Final result
n Double logs at one-loop order

n Collins-Soper-Sterman resummation (NLL)

6/28/23 16
Mueller, Xiao, Yuan 2013



Sudakov resummation in CGC: 
other examples

n Dijet production in DIS (NLL)
¨Caucal-Salazar-Schenke-Venugopalan 2022, 2023
¨Paels-Altinoluk-Beuf-Marquet 2022

n Sudakov logs can be re-summed consistently in 
the small-x formalism

n Kinematics of Sudakov logs and small-x evolution 
are well separated
¨Soft vs collinear gluons
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Extend to dijet in hadronic processes: 
count the leading double logs

n Each incoming parton contributes to a half of 
the associated color factor 
¨ Initial gluon radiation, aka, TMDs

n Soft gluon radiation in collinear calculation also 
demonstrates this rule
¨Sterman, et al
¨Sub-leading logs will be much complicated, usually 

a matrix form 
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Mueller, Xiao, Yuan 2013



Beyond the leading double logs: collinear
n Jet size-dependence is computed by averaging the 

azimuthal angle between the soft gluon and leading jet
n Matrix form due to colored final state   Kidonakis-Sterman 1997
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(Sun, C.-P. Yuan, F. Yuan, PRL 2014)

D: color-factor for the jet
R: jet size



Compare to the full calculations
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Compare to the data
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D0 data

Full NLO: Nagy 2002, NLOJET++  

NLL Resummation:
Sun,C.P.Yuan, F.Yuan, PRL2014



Include Sudakov effects in the CGC for 
di-hadron correlations

n Unintegrated gluon distributions w/ Sudakov, e.g.,

6/28/23 22Stasto, Wei, Xiao, Yuan, 2018, 1805.05712

https://arxiv.org/abs/1805.05712


Real data teach us more on the physics
n Compare pp to pA

6/28/23 23
STAR Coll., PRL 2022, arXiv:2111.10396



Simple extraction of nuclear suppression 
indicates a Pt-broadening effects

n Suppression factor depends on 
the background subtraction
¨STAR fit: constant 

background+simple Gaussian 
shows no Pt-broadening

n Pt-broadening is not as profound 
as our previous predictions
¨ It may change if different 

background subtraction used
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Looking forward

n We need more data
¨Cross check the background! E.g., through charged particle 

pairs, mixed pairs etc., and photon+hadron correlations
n We need theory developments

¨Complete NLL resummation for dijet in hadronic collisions in 
CGC (collinear framework done)

¨Need BK-JIMWLK evolution for all different UGDs, at least 
qualitatively
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Photon-Jet correlation

n Leading order 
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FIG. 7. Two LO amplitudes.

Adding them together, we have
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Again, this leads to a leading double logarithmic contribution as,

��s

2⇤
CA ln2

⇤
Q2b2⇥
c20

⌅
, (42)

the same as that for Higgs boson production.

III. DOUBLE LOGARITHMS IN JET-PHOTON PRODUCTION IN PA COLLI-
SIONS

In this section, we will present a detailed analysis on the Sudakov double logarithms in
small-x calculations, by extending our previous calculation of Higgs boson production to the
photon-jet production in pA collisions. We will demonstrate that at one-gluon radiation,
the soft gluon contributes to the Sudakov double logarithms, whereas the collinear gluon
contributes to the small-x evolution (in this case, it is the BK evolution). These two con-
tributions are well separated in the phase space of the radiated gluon, and also by di�erent
diagrams. Once we have shown this example, we will carry out the calculations of leading
double logs for other hard processes.

A. Generic Arguments

First of all, let us study the q + g ⇥ q + ⇥ case. The leading order cross section for real-
photon and associate jet productions in pA collisions, as shown in Fig. 17, can be written

11

Dipole gluon distribution



BK-evolution
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(a) (b)

(d)(c)

FIG. 8. Four one loop real emission graphs which contribute to the leading power amplitude for
the Sudakov factor, while two other graphs which have the radiated gluon attaching to the red
dots are neglected.
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where v⌅ = zx⌅ + (1� z)b⌅ and u⌅ = x⌅ � b⌅ with x⌅ and b⌅ being the coordinates of the
produced real photon and quark, respectively.

It straightforward to see that those four dipole scattering amplitudes correspond to the
four di�erent graphs after squaring the LO amplitudes as shown in Fig. 17. The red dots in
Fig. 17 indicate the highly virtual quark propagators in the dijet correlation limit (P⌅ ⌅ q⌅).
Simple power counting analysis shows that the LO cross section is proportional to q4⌅/P

4
⌅

as a result of the product of two quark propagators (as indicated by the red dots) which is
proportional to 1/P 2

⌅. This result is explicitly shown in Ref. [1]. Therefore, in the leading
power approximation at one loop order, one can treat this highly virtual quark propagator
as an e�ective vertex, namely, any additional gluon attachment to the vertex, which brings
another power of 1/P 2

⌅, is power suppressed therefore can be neglected.1

For the sake of simplicity, with the cancelation of the 1
�2 term in mind, we can obtain

the Sudakov factor from the real graphs only by choosing µ2 = P 2
⌅ without dealing with the

virtual graphs.

1 This power counting analysis only works when the radiated gluon is not collinear to the incoming target.

Namely, if the longitudinal momentum of the radiated gluon vanishes, which indicates that the gluon is

collinear to the nucleus target and generates the rapidity divergence, the radiated gluon can attach to the

red vertex without being power suppressed. In this region, as we have expected, the rapidity divergence

can be absorbed into the corresponding BK equation. Therefore, in fact, the four graphs which contribute

to the Sudakov double logarithm which is shown in Fig. 18 (graph (a) and (d) do not contribute to the

BK evolution), are not the same as the graphs which contribute to the BK evolution (only graph (b) and

(c) together with two other graphs which are not shown contribute to the BK evolution) of the relevant

dipole amplitudes. We have also explicitly worked out the derivation of the BK equation at one-loop level.
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FIG. 8. Four one loop real emission graphs which contribute to the leading power amplitude for
the Sudakov factor, while two other graphs which have the radiated gluon attaching to the red
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FIG. 9. Real gluon radiation contribution to the BK-evolution, but not to the leading double
logarithms.

where ⇧i = kg ·p2/ki ·p2. All the integral of the phase space resulting into the leading double
logs demonstrated in the previous section holds in the above functional forms as well.

In the analysis, we focus on two di�erent regions of the radiated gluon: (1) soft gluon,
where �g ⇤ ⇥g ⇧ 1; (2) collinear to the momentum of the nucleus, where �g ⇧ 1 but
⇥g ⇤ 1. The region (1) contribute to the Sudakov double logarithms, whereas the region (2)
contributes to the small-x evolution for the unintegrated gluon distribution associated with
the nucleus. In both case, ⇧i ⌥ 0 limit will be taken in the analysis of their contributions.
For the small-x evolution, we require additional kg · p1 ⇤ p2 · p1 ⌃ (k1+ k2) · p1 ⇤ Q2. These
two regions will be main focus to be analyzed in the gluon radiation to the qg ⌥ q⇤ hard
process.

Again, the leading order diagram has been shown in Fig. 3, and can be summarized into
the following form,

A0 ⇤
⇤
k�
2⇥

k2
2⇥

� k�
2⇥ � (1� z)q�⇥

(k2⇥ � (1� z)q⇥)2

⌅⇧
d2x⇥e

iq�·x�U(x⇥) , (48)

where k1⇥, k2⇥ represent the momenta for the final state quark and photon, q⇥ = k1⇥+k2⇥.
In the correlation limit, we will find out that the non-zero contribution comes from the
derivative of the Wilson line U(x⇥), which leads to the cross section is proportional dipole
gluon distribution.

Let us first analyze the small-x evolution contribution, for which we focus on collinear
gluon radiation parallel to the nucleus momentum. Some of the diagrams are straightfor-
ward, whereas some are non-trivial. The diagram (a) is, in particular, interesting, because
it only contributes to the small-x evolution, not to the soft gluon double logarithms. The
propagator goes as,

� k⇤µ(� k+� kg)
k2(k + kg)2

, (49)

where k = k1 + k2. Since k is far o�-shell, k2 ⇤ Q2, (k + kg)2 will be far o�-shell as well if
kg is soft. However, it does have contribution in the collinear limit. We can work out the
explicit dependence in the above expression,

⌅ 2⌅ · kg⇥
k2
g⇥

�
1 + k·p1

kg ·p1

⇥ . (50)
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Soft gluon radiation

n A2 from (a,b) contribute to CF/2 (jet)
n A2 from (c,d) contribute to CF

n Interference contribute to 1/2Nc
6/28/23 28

(a) (b)

(d)(c)

FIG. 8. Four one loop real emission graphs which contribute to the leading power amplitude for
the Sudakov factor, while two other graphs which have the radiated gluon attaching to the red
dots are neglected.
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where v⌅ = zx⌅ + (1� z)b⌅ and u⌅ = x⌅ � b⌅ with x⌅ and b⌅ being the coordinates of the
produced real photon and quark, respectively.

It straightforward to see that those four dipole scattering amplitudes correspond to the
four di�erent graphs after squaring the LO amplitudes as shown in Fig. 17. The red dots in
Fig. 17 indicate the highly virtual quark propagators in the dijet correlation limit (P⌅ ⌅ q⌅).
Simple power counting analysis shows that the LO cross section is proportional to q4⌅/P

4
⌅

as a result of the product of two quark propagators (as indicated by the red dots) which is
proportional to 1/P 2

⌅. This result is explicitly shown in Ref. [1]. Therefore, in the leading
power approximation at one loop order, one can treat this highly virtual quark propagator
as an e�ective vertex, namely, any additional gluon attachment to the vertex, which brings
another power of 1/P 2

⌅, is power suppressed therefore can be neglected.1

For the sake of simplicity, with the cancelation of the 1
�2 term in mind, we can obtain

the Sudakov factor from the real graphs only by choosing µ2 = P 2
⌅ without dealing with the

virtual graphs.

1 This power counting analysis only works when the radiated gluon is not collinear to the incoming target.

Namely, if the longitudinal momentum of the radiated gluon vanishes, which indicates that the gluon is

collinear to the nucleus target and generates the rapidity divergence, the radiated gluon can attach to the

red vertex without being power suppressed. In this region, as we have expected, the rapidity divergence

can be absorbed into the corresponding BK equation. Therefore, in fact, the four graphs which contribute

to the Sudakov double logarithm which is shown in Fig. 18 (graph (a) and (d) do not contribute to the

BK evolution), are not the same as the graphs which contribute to the BK evolution (only graph (b) and

(c) together with two other graphs which are not shown contribute to the BK evolution) of the relevant

dipole amplitudes. We have also explicitly worked out the derivation of the BK equation at one-loop level.
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The leading double logarithmic contribution from the above equation is large Nc suppressed,
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where the leading Nc contribution in the trace vanishes because of Tr
�
⌥U(x⇧)U †(x⇧)

⇥
= 0.

Adding the above contributions together, we will find out the total contribution is pro-
portional to

|A1 + A2|2 =
⇧
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, (65)

which is the same as that in the analysis of the collinear factorization calculations.

IV. DOUBLE LOGS IN DIJET PRODUCTION IN PA COLLISIONS

In this section, we will extend the discussions in the previous section to the general dijet
production in pA collisions. We only focus on the Sudakov double logarithms. We expect
the small-x evolution will follow the same as that for the photon-jet production process.

We will derive the double logs for all the hard processes relevant for dijet production. The
basic idea is to identify the initial and final state radiations, and calculate the associated
contributions in the leading double logarithmic approximation.

A. gg ⇧ qq̄

From Ref.[1], we can write down the leading Born amplitude for qq̄ pair production,

A0 =

⇧
d2x⇧e

iq⇥·x⇥��(k1⇧)
�
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, (66)
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ggàqq

n |A1|2àCA, |A2|2àCF/2, |A3|2àCF/2
n 2A1*(A2+A3)à-Nc/2
n 2A2*A3, 1/Nc suppressed
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FIG. 10. Soft gluon radiation in gg ⇤ qq̄ process in the saturation formalism. The blobs in the
lower two diagrams represent the multiple gluon interaction with nucleus formulated in Ref. [1] in
the correlation limit.

where again we have taken the correlation limit. The amplitude squared will be,
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. (67)

This is consistent with what we have found in Ref. [1].

B. qg ⇤ q�

The initial state radiation contribution can be written as
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where a represents the color index for incoming gluon, b for radiated gluon, ij for the final
state quark pair. Gluon radiation from the quark and antiquark lines can be written as
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(69)
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The amplitude squared of the above terms can be easily calculated, following the example
in previous section,

|A1|2 = CA|A0|2, |A2|2 =
CF

2
|A0|2, |A3|2 =

CF

2
|A0|2 . (70)

The interference between them is a little involved, but also straightforward. For example,
for 2A1A⇤

22, we have, for the Wilson line part,
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⇤
2 =

1

NF
Tr[T bU(x2)T

cU †(x2)]

⇥Tr
⇤�
(1� z)⌥⇧U(x⇧)[T

a, T c]U †(x⇧)� zU(x⇧)[T
a, T c]⌥⇧U

†(x⇧)
⇥

�
(1� z)U(y⇧)T

a⌥⇧U
†(y⇧)T

b � z⌥⇧U(y⇧)T
aU †(y⇧)T

b
⇥⌅
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Again, taking the leading double logarithmic approximation, we will have ⇥(2)(x⇧ � x2⇧),
which will simplify the above expression, and we shall obtain,
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Similarly, following the same procedure, we have
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On the other hand, the interference between A2 and A3 is large Nc suppressed.
By adding the above two equations together, we find that the interference terms will con-

tribute to a factor ofNc/2 to the leading double logarithms. Therefore, the total contribution
will be

|A1 + A2 + A3|2 =
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�
, (74)

in the large Nc limit.

C. qg ⇤ qg channel

Tthe leading Born amplitude for qg ⇤ qg channel can be written as,

A0 =
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, (75)
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n 2A3*(A1+A2)à-Nc/2
n 2A1*A2, large Nc suppressed
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FIG. 11. Same as Fig. 10 for qg ⇤ qg process.

where again we have taken the correlation limit. The amplitude squared will be,
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This is consistent with what we have found in Ref. [1].
The initial state radiation contribution can be written as

A1 =
2(kg⇤ � kg2⇤)µ
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, (77)

where a represents the color index for out going final state gluon, b for radiated gluon, ij
for the initial and final state quarks. Gluon radiation from the quark and gluon lines can
be written as
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(78)

The amplitude squared of the above terms can be easily calculated, following the example
in previous section,

|A1|2 = CF |A0|2, |A2|2 =
CF

2
|A0|2, |A3|2 =

CA

2
|A0|2 . (79)
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The leading double logarithmic contribution from the above equation is large Nc suppressed,
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where the leading Nc contribution in the trace vanishes because of Tr
�
⌥U(x⇧)U †(x⇧)

⇥
= 0.

Adding the above contributions together, we will find out the total contribution is pro-
portional to

|A1 + A2|2 =
⇧
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, (65)

which is the same as that in the analysis of the collinear factorization calculations.

IV. DOUBLE LOGS IN DIJET PRODUCTION IN PA COLLISIONS

In this section, we will extend the discussions in the previous section to the general dijet
production in pA collisions. We only focus on the Sudakov double logarithms. We expect
the small-x evolution will follow the same as that for the photon-jet production process.

We will derive the double logs for all the hard processes relevant for dijet production. The
basic idea is to identify the initial and final state radiations, and calculate the associated
contributions in the leading double logarithmic approximation.

A. gg ⇧ qq̄

From Ref.[1], we can write down the leading Born amplitude for qq̄ pair production,

A0 =
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, (66)
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The amplitude squared of the above terms can be easily calculated, following the example
in previous section,

|A1|2 = CA|A0|2, |A2|2 =
CF

2
|A0|2, |A3|2 =

CF

2
|A0|2 . (70)

The interference between them is a little involved, but also straightforward. For example,
for 2A1A⇤

22, we have, for the Wilson line part,
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Again, taking the leading double logarithmic approximation, we will have ⇥(2)(x⇧ � x2⇧),
which will simplify the above expression, and we shall obtain,
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Similarly, following the same procedure, we have
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On the other hand, the interference between A2 and A3 is large Nc suppressed.
By adding the above two equations together, we find that the interference terms will con-

tribute to a factor ofNc/2 to the leading double logarithms. Therefore, the total contribution
will be

|A1 + A2 + A3|2 =
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in the large Nc limit.

C. qg ⇤ qg channel

Tthe leading Born amplitude for qg ⇤ qg channel can be written as,
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, (75)
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FIG. 12. Same as Fig. 10 for gg ⇤ gg process.

Where F (1,2,3)
g represent the following Wilson lines,
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With these expressions, we will obtain the same di⇥erential cross sections as that in Ref. [1].
The initial and final state radiation contributions can be written as
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where d is the color index for the radiated gluon.
The amplitude squared of the above three terms can be easily calculated,
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