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Two ways to reach saturation experimentally
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Simply speaking, saturation is a nonlinear gluon dynamics that gluon splitting ~ gluon recombination.

a) higher energy (1/x)
b) higher nuclear density (A)

𝑸𝒔𝟐~
𝐀
𝐱

𝟏/𝟑
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Complementarity: UPC and EIC
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EICUPC RHIC & LHC
Electroproduction (virtual photons)Photoproduction only (real photons)

Q
2

– an independent hard scaleMass or pT – hard scales

CM energy, W ~ [9, 86] GeV, x ~ 10
-4 

-10
-2

CM energy, W ~ [4, 400-1000] GeV, x ~ 10
-5 

-10
-1

Deuterium to Uraniummostly Pb
208

, Au
197

.

Large far-forward coverage, esp. for nuclear breakup.Limited far-forward coverage for breakup products

photon

Naively, UPCs is an “easier” option to probe saturation.
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UPCs kinematics & challenges 
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Ø Z⍺EM ~ O(1), overcomes the weak coupling by 
large photon flux;

Three challenges: 
a) Impact parameter b > 2RA, but cannot be 

controlled event-by-event; 
How to know its photon-induced interactions? 

b) Kinematics is unknown, unless inferred by the 
final-states:                                                 
what is the C.o.M energy (e.g., W)?

c) Photon energy is ambiguous in AA UPCs: 
who is the photon emitter?
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Vector Meson photoproduction sensitive to xG(x,Q2)
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- One that ticks all the boxes…
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Vector Meson photoproduction sensitive to xG(x,Q2)
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UPC VMs measurement:
• Large rapidity gap and only 1 VM in central rapidity.
• t is approximated by: t ~ (kT,photon + pT,VM)2 ~ (pT,VM)2, photon <kT> is 30-40 MeV
• W is determined by exclusivity:  W2 = 2ENMVMExp(-y)  

- One that ticks all the boxes…
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Vector Meson photoproduction sensitive to xG(x,Q2)
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UPC VMs measurement:
• Large rapidity gap and only 1 VM in central rapidity.
• t is approximated by: t ~ (kT,photon + pT,VM)2 ~ (pT,VM)2, photon <kT> is 30-40 MeV
• W is determined by exclusivity:  W2 = 2ENMVMExp(-y)  

Coherent
(target stays intact)

Incoherent
(target breaks up)

Average gluon density* Event-by-event gluon 
density fluctuations*

Momentum transfer (t) and transverse spatial position 
(b) are Fourier transforms of each other;

* known as the Good-Walker Paradigm

- One that ticks all the boxes…
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Large suppression has been found in AA UPCs w.r.t 
free nucleon (~ Impulse approximation)
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14  = 5.02 TeVNNs   ψ Pb+Pb+J/→ALICE Pb+Pb 

ψALICE coherent J/
Impulse approximation
STARLIGHT
EPS09 LO (GKZ)
LTA (GKZ)
IIM BG (GM)
IPsat (LM)
BGK-I (LS)
GG-HS (CCK)
b-BK (BCCM)

Ø Saturation models vs Shadowing models, 
none of them can describe both forward 
and midrapidity data simultaneously. 

Ø Challenge c) was not addressed: Photon 
energy ambiguity. 

     
     W2 = 2ENMVMExp(-y). 
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Proof of ambiguity: two-source interference
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Rapidity dependence is consistent with 
theory/model; interference effect is 
stronger if photon energies are similar. 

First observed w. 𝝆0 in 2008 by STAR
(Phys.Rev.Lett.102:112301,2009)

Reference to CGC: Phys. Rev. D 106 (2022) 7, 074019 
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Ambiguity at a closer look
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Ø If VM at rapidity y ≠ 0, there is a high 
energy photon (k1) candidate and a low 
energy photon (k2) one;

Ø Different photon energies correspond to 
different flux factors (~number of photons)

Ø Different neutron emissions associate with 
different flux factors and assumed to be 
independent of coherent process. 

STARLight model

Neutron classes:
• 0n0n: no neutron on either side
• 0nXn: >=1 neutron on one side
• XnXn: >=1 neutron on both sides
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Ambiguity at a closer look
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ψJ/
 y±Mirrored Ø If VM at rapidity y ≠ 0, there is a high 

energy photon (k1) candidate and a low 
energy photon (k2) one;

Ø Different flux factor (~number of photons) at 
different energy

Ø Each process associates with neutron 
emission in an independent way

STARLight model

Neutron classes:
• 0n0n: no neutron on either side
• 0nXn: >=1 neutron on one side
• XnXn: >=1 neutron on both sides

a)Coherent J/𝛙 production is 
independent of neutron emissions

b)Incoherent J/𝛙 production is highly 
correlated with neutron emissions 
(e.g., BeAGLE)

1− 0.5− 0 0.5 1
ψJ/

 y⋅) nsgn(y

20

40

60

80

b)
 

µ
/d

y 
(

σd

+Au*+Au*ψ J/→Au+Au STAR Preliminary

data coherent 0nXn 
data incoherent 0nXn 
BeAGLE 0nXn 

New data tests nuclear breakup 
model and assumptions

Reference to BeAGLE: Phys. Rev. D 106 (2022) 1, 012007

New
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Neutron emission helps resolve the two-way ambiguity
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Measurements
(slide 6)

Photon fluxes
(slide 8)

Unknowns

Need to measure differential cross section in y and in neutron 
emission classes; at least 2 equations to solve 2 unknowns.

Eur. Phys. J C (2014) 74:2942
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Coherent J/𝛙 cross section vs energy W: Smoking 
gun for saturation starting at x ~10-2.5 ? 
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arXiv:2305.19060

arXiv:2303.16984

Data are compatible to each other, and still none of the models can describe the W dependence.
CGC saturation calculation does not have enough suppression.
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Incoherent J/𝛙 cross section vs pT
2
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New

[made by A. Kumar (IIT, Delhi)]

Sartre 
simulation
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Incoherent J/𝛙 cross section vs pT
2
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v Compared to the H1 data with free proton. 
The suppression factor ~ is 40%. 
Stronger than that for coherent production.

v Models have found that the H1 data 
supports sub-nucleonic fluctuation. 

     [Phys. Rev. Lett. 117 (2016) 5, 052301]

v STAR data shows the bound nucleon has a 
similar shape in pT

2 as the free proton, 
indicating similar sub-nucleonic 
fluctuation in heavy nuclei.
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New

[Phys. Rev. D 106 (2022) 7, 074019 ]
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Incoherent J/𝛙 cross section vs pT
2
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v Direct comparisons to the fluctuation 
models do not give a clear answer.

v The shape seems to be supported more 
by the one without fluctuation. 
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Incoherent J/𝛙 cross section vs pT
2

17

v Compared to the H1 data with free proton. 
The suppression factor ~ is 40%. 
Stronger than that for coherent production.

v Models have found that the H1 data 
supports sub-nucleonic fluctuation. 

     [Phys. Rev. Lett. 117 (2016) 5, 052301]

v STAR data shows the bound nucleon has a 
similar shape in pT

2 as the free proton, 
indicating similar sub-nucleonic 
fluctuation in heavy nuclei.
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[Phys. Rev. D 106 (2022) 7, 074019 ]

ALICE new data (arXiv:2305.06169) 
is perfectly compatible with 
STAR’s in terms of shape.

ALICE claimed the data supported 
scenario with fluctuation.
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A new idea in UPCs: double ratio w. qualitative difference
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Saturation models predict 
RDEI > 1

Shadowing models predict 
RDEI < 1

RHIC expects RDEI < 1 LHC?

Ongoing theory study for saturation 
(see talk by B. Sun tomorrow)

Energy (GeV)

2-gluon exchange vs 
1-gluon exchange
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Future UPCs opportunities
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2023 2025 2029 2034+

RHIC 23-25

Since 2022, STAR has forward 
detectors (2.5 < η < 4.0):
• J/𝛙 coherent and incoherent 

production with high 
precision. Lower W towards 
a few GeV, and high t to 
better understand fluctuation.

• 𝝓 photoproduction. 
• Photoproduction of jets.
• New observables.
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Future UPCs opportunities
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Since 2022, STAR has forward 
detectors (2.5 < η < 4.0):
• J/𝛙 coherent and incoherent 

production with high 
precision. Lower W towards 
a few GeV, and high t to 
better understand fluctuation.

• 𝝓 photoproduction. 
• Photoproduction of jets.
• New observables.

2023 2025 2029 2034+

RHIC 23-25 & LHC Run 3

All LHC experiments will have significant 
upgrades in Run 3 & 4 (e.g., wide acceptances, 
ALICE FoCal, etc.). Lower-x reach!

LHC Run 4
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Future UPCs opportunities
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All LHC experiments will have significant 
upgrades in Run 3 & 4 (e.g., wide acceptances, 
ALICE FoCal, etc.). Lower-x reach!

2023 2025 2029 2034+

LHC Run 4RHIC 23-25 & LHC Run 3

The ePIC detector and possible 
a 2nd detector: the ultimate 
machine for understanding 
saturation quantitatively with a 
wide variety of observables.

EIC era

Since 2022, STAR has forward 
detectors (2.5 < η < 4.0):
• J/𝛙 coherent and incoherent 

production with high 
precision. Lower W towards 
a few GeV, and high t to 
better understand fluctuation.

• 𝝓 photoproduction. 
• Photoproduction of jets.
• New observables.
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UPCs studies in the past 2 decades
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Note:
Only experimental 
publications (I counted 
46) with at least one 
beam is nucleus.

ATLAS
17.4%

CMS
15.2%

LHCb
8.7%

STAR
26.1%

PHENIX
2.2%

ALICE
30.4%

UPC publications by heavy ion experiments
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Number of UPC publications vs time 
dijet
2.2%
di-muon
8.7%

light-by-light
8.7%

J/𝛙
34.8%

𝛙(2s)
2.2%

⍴0
21.7%

di-electron
8.7%

4𝞹
2.2%

J/𝛙, di-electron
2.2%

neutrons
4.3%

UPC observables 

Science Advances
2.3%
EPJC
9.1%
Nature Physics
2.3%
JHEP
13.6%

J Phys. G
2.3%

PLB
18.2%

PRL
29.5%

PRC
22.7%

Journal
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UPCs studies in the past 2 decades
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Note:
Only experimental 
publications with at least 
one beam is nucleus

Hot QCD White Paper (2023)

~ 10 pages on UPCs

Hot QCD White Paper (2015)

Only 1 paragraph on UPCs
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Summary
ØUPCs is an excellent experimental probe to study 

the initial-state physics in nucleon and nucleus 
and input to the Electron-Ion Collider.

Ø LHC UPC J/𝛙 data has been found significantly 
suppressed relative to the free nucleon. 

Ø Energy dependence is surprisingly weak after 50 
GeV in W or x < 10-2.5 . Saturation?

Ø Incoherent J/𝛙 production is found to be more 
suppressed than that in coherent, and similar level 
of fluctuation as in free nucleon. 

ØLHC and RHIC UPCs program are 
complementary, covering a wide energy reach.

The ePIC detector and possible 
a 2nd detector: the ultimate 
machine for understanding 
saturation quantitatively with a 
wide variety of observables.

EIC era
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Summary
ØUPCs is an excellent experimental probe to study 

the initial-state physics in nucleon and nucleus 
and input the the Electron-Ion Collider.

Ø LHC UPC J/𝛙 data has been found significantly 
suppressed relative to the free nucleon. 

Ø Energy dependence is surprisingly weak after 50 
GeV in W or x < 10-2.5 . Saturation?

Ø Incoherent J/𝛙 production is found to be more 
suppressed than that in coherent, and similar level 
of fluctuation as in free nucleon. 

ØLHC and RHIC UPCs program are 
complementary, covering wide energy reach.

The ePIC detector and possible 
a 2nd detector: the ultimate 
machine for understanding 
saturation quantitatively with a 
wide variety of observables.

EIC era

Special thanks to:

CGC: Heikki Mäntysaari, Farid Salazar, Björn Schenke
Sartre: Tobias Toll, Arjun Kumar
Nuclear shadowing: Vadim Guzey, Mark Strikman, Mikhail Zhalov
NLO pQCD: Topi Löytäinen et al. 
Saturation observables: Brian Sun, Y. Kovchegov

For discussions and inputs.
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Backup

26
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A full picture: coherent + incoherent

27

v STAR data compared with four 
theory/MC models.

v Sartre with sub-nucleonic fluctuation 
(s.n.f) & CGC are similar models but 
different by a normalization factor ~ 
0.65. 

v Question to theorists: Why?
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Reference to CGC: Phys. Rev. D 106 (2022) 7, 074019 
Reference to LTA: arXiv:2303.12052

https://arxiv.org/abs/2303.12052
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A full picture: coherent + incoherent

28

v STAR data compared with four 
theory/MC models.

v Sartre with sub-nucleonic fluctuation 
(s.n.f) & CGC are similar models but 
different by a normalization factor ~ 
0.65. 

v Question to theorists: Why?

Kong Tu 
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Full momentum region

STAR data is important 
to understand
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NLO calculation 

29

Next-to-Leading Order (NLO) pQCD 
calculation, constrained by the LHC data

EPPS21 + scale at 2.39 GeV.
Only scale uncertainty shown.

Could not describe the STAR data at y = 0.

Reference to NLO pQCD calculation: 
a) arXiv:2210.16048
b) Phys. Rev. C 106 (2022) 3, 035202

New
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Neutron classes:
• 0n0n: no neutron on either side
• 0nXn: >=1 neutron on one side
• XnXn: >=1 neutron on both sides

UPCs have large contributions from QED Coulomb excitations 

or J/𝛙
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