High-energy dipole scattering amplitude off a proton

from low-energy light-cone wave function & BK evolution

Adrian Dumitru, with Heikki Mäntysaari, Risto Paatelainen

for the SURGE collaboration

June 2023

BFKL / BK/ JIMWLK evolution eqs are differential eqs, require initial condition: dipole in Large-Nc approximation

$$\partial_Y S(\vec{x}, \vec{y}) = \frac{\alpha_s N_c}{2\pi^2} \int d^2 z \, \frac{(\vec{x} - \vec{y})^2}{(\vec{x} - \vec{z})^2 \, (\vec{z} - \vec{y})^2} \left[S(\vec{x}, \vec{z}) \, S(\vec{z}, \vec{y}) - S(\vec{x}, \vec{y}) \right]$$

- issues with current implementations of I.C. (next slide)
- body of empirical knowledge of "large-x" structure of proton, can it be incorporated ?
- in the future: proton LCwf from the lattice? (though only x>~ 0.1) If available, how can we use it to construct I.C. for small-x ?

Initial conditions for (rc)BK fits to small-x inclusive HERA data :

$$N(r; x_0) = 1 - \exp\left[-\frac{1}{4} (r^2 Q_{s0}^2)^{\gamma} \log\left(\frac{1}{r\Lambda} + ee_c\right)\right] \xrightarrow{\text{AAMQS: PRD 80 (2009)}}{\text{EPJ-C 71 (2011)}}_{\text{Lappi, Mäntysaari: PRD 88 (2013)}}$$

- fits prefer $\gamma \sim 1.1 1.2$; violates pQCD prediction N(r) ~ r² for small r², positivity of Fourier transform (UGD) issues with generalization to nuclei (Albacete et al, 1209.2001)
- imposed at $x_0=0.01$, requires re-fit for other x_0 no prediction for dependence on x_0 as required for NLO (e.g. Ducloue et al, 1902.06637)
- no connection to "large"-x proton structure; parameters fitted to small-x data itself, rcBK + LO photon w.f. → χ²/N_{dof} ~ 1, → "perfect fit" !? no statistical evidence for NLO corrections! (they'd either make matters worse or they could be absorbed into a retune of the initial condition)

The proton on the light front

The proton on the light front (three quark Fock state; L.C. time $x^+ = 0$)

$$|P\rangle = \frac{1}{\sqrt{6}} \int \frac{dx_1 dx_2 dx_3}{\sqrt{x_1 x_2 x_3}} \delta(1 - x_1 - x_2 - x_3) \int \frac{d^2 k_1 d^2 k_2 d^2 k_3}{(16\pi^3)^3} 16\pi^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)$$

$$\times \psi(k_1, k_2, k_3) \sum_{i_1, i_2, i_3} \epsilon_{i_1 i_2 i_3} |p_1, i_1; p_2, i_2; p_3, i_3\rangle$$

+ higher Fock states

P. Lepage & Brodsky, 1979 - Brodsky, Pauli, Pinsky, PR (1998)

- * Fock space amplitude ψ is gauge invariant, universal, and process independent, encodes the non-perturbative structure of hadrons (QCD eigenstates)
- * fix 3q wave function Ψqqq from low-energy / "large"-x proton structure, augment by Ψqqqg via LCpt
 * evolution adds additional soft gluons into wave function

Now to
$$|P\rangle \sim \psi_{qqq}|qqq\rangle + \psi_{qqqg}|qqqg\rangle$$

computed in perturbation theory, 1-gluon emission / exchange, w/o employing $x_g \rightarrow 0$ approximation; built on top of qqq "low-energy structure" of the proton

Color charge correlators:

2-body GTMD / Wigner

LO diagrams

NLO color charge correlators

Twenty thousand leagues under the seas

from $x = 0.1 \rightarrow x = 10^{-4}$ (and below) ?

selected results from arXiv:2303.16339 (w/ Heikki Mäntysaari & Risto Paatelainen)

Effective transverse "profile"

- $T(b) \sim \int \mathrm{d}^2 r \ N(\vec{r}, \vec{b}; x)$
- r and x-dependent
- close to the Gaussian profile that was fitted to data

r-dependence of N(r;x)

LL evolution of N(r;x) from $x_0 = 0.01$

- adds Fock states with addl soft gluons
- BFKL only for y <~ 2
- saturation requires y~6 ↔
 x ~ 2E-5: r_s=0.3fm, Qs=1GeV

DIS cross section

- total (light q) X-sec sensitive to large dipoles
- charm X-sec saturated by perturbative dipoles \rightarrow focus on charm

 \sim

FIG. 9: Charm production reduced cross section at $\sqrt{s} = 318 \text{ GeV}$ compared to the HERA data. Results are shown in the region where $\bar{x} \leq 0.01$.

- decent agreement, only fit parameter is (fixed) α_s,
 <u>no re-tune of Brodsky & Schlumpf non-perturbative qqq wave function</u> was performed !
- we covered 3 decades in energy from x ~ $0.1 \rightarrow$ x ~ 10^{-4}

Statistical evidence for systematic corrections :

- HERA data is very accurate!
- $\chi^2/N_{dof} = 2.27$ for $N_{dof} = 38$: p-value (integral over χ^2 distribution) ~ 10^{-5} !
- evidence for moderate but systematic corrections: photon w.f. (here: LO) evolution eqn (here: LL-BK) initial condition

Done:

- tables & analytical parameterizations for b-averaged $N_0(r;x)$ using Brodsky & Schlumpf non-pert. qqq LCwf + LCpt one gluon correction
- tables & interpolation routines for $N_0(\vec{r}, \vec{b}; x)$, incl. angular dependence !

Later on (if requested):

- option to try other non-pert. qqq wave functions
- imaginary part due to perturbative C-odd ggg exchange
- etc...

Model LFwf for the proton (Brodsky & Schlumpf, PLB 329, 1994)

$$\psi_{\text{H.O.}}(x_1, \vec{k}_1; x_2, \vec{k}_2; x_3, \vec{k}_3) = N_{\text{H.O.}} \exp(-\mathcal{M}^2/2\beta^2) ,$$

 $\psi_{\text{Power}}(x_1, \vec{k}_1; x_2, \vec{k}_2; x_3, \vec{k}_3) = N_{\text{Power}}(1 + \mathcal{M}^2/\beta^2)^{-p} .$
 $\mathcal{M}^2 = \sum_{i=1}^{3} \frac{\vec{k}_{\perp i}^2 + m^2}{x_i}$
m = 0.26 GeV, β = 0.55 for H.O. wf
m = 0.263, β = 0.607, p = 3.5 for PWR wf

With these parameters they fit:

- proton radius
$$R^2 = -6 \left. \frac{dF_1(Q^2)}{dQ^2} \right|_{Q^2=0} = (0.76 \text{ fm})^2$$

- proton / neutron magnetic moments $1+F_2(Q^2
 ightarrow 0)=2.81 \; / \; -1.66$
- axial vector coupling $g_A = 1.25$

The definition of χ^2

If ν independent variables x_i are each normally distributed with mean μ_i and variance σ_i^2 , then the quantity known as *chi-square*² is defined by

$$\chi^2 \equiv \frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} + \dots + \frac{(x_\nu - \mu_\nu)^2}{\sigma_\nu^2} = \sum_{i=1}^{\nu} \frac{(x_i - \mu_i)^2}{\sigma_i^2}$$
(1)

Note that ideally, given the random fluctuations of the values of x_i about their mean values μ_i , each term in the sum will be of order unity. Hence, if we have chosen the μ_i and the σ_i correctly, we may expect that a calculated value of χ^2 will be approximately equal to ν . If it is, then we may conclude that the data are well described by the values we have chosen for the μ_i , that is, by the hypothesized function.

The χ^2 distribution

The quantity χ^2 defined in Eq. 1 has the probability distribution given by

$$f(\chi^2) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} e^{-\chi^2/2} (\chi^2)^{(\nu/2)-1}$$

This is known as the χ^2 -distribution with ν degrees of freedom. ν is a positive integer.