Detectors in weakly-coupled field theories arXiv:2209.00008

Simon Caron-Huot ${ }^{1}$, Murat Koloğlu ${ }^{2,3,4}$, Petr Kravchuk ${ }^{2,5,6,7}$, David Meltzer ${ }^{2,8}$, David Siminomo-Dumin²

small-x physics in scalar ϕ^{4} theory

SURGE proposal:

- Small x evolution: LO evolution is not sufficient for accuracy. Need the NLO and beyond. How to consistently implement resummation in non-linear evolution and match small with large x, relevant for EIC kinematic regime?

Motivation

Scalar ϕ^{4} theory lacks gluons: we don't expect saturation-like behavior.

Linear physics is still interesting (DGLAP and BFKL-like).

Q : what is the Pomeron intercept in scalar ϕ^{4} ?

DGLAP evolution of ϕ parton distribution:

$$
\begin{aligned}
\mu \frac{d}{d \mu} f_{\phi}(x ; \mu) & =\int_{x}^{1} \frac{d z}{z} P_{\phi \rightarrow \phi}(z) f_{\phi}\left(\frac{x}{z} ; \mu\right) \\
P_{\phi \rightarrow \phi}(z) & =\frac{\lambda^{2}}{(4 \pi)^{4}}\left[1-z-\frac{1}{6} \delta(1-z)\right]+O\left(\lambda^{3}\right)
\end{aligned}
$$

DGLAP kernel lacks I/z singularity from soft emissions.
\Rightarrow expect $\lim _{x \rightarrow 0} x f_{\phi}(x)=0$: small-x physics stays linear. $x \rightarrow 0$
(Contrast with: $x f_{g}(x) \rightarrow \infty$ from QCD DGLAP.)
$\mathrm{Q}:$ What is the pomeron intercept: $f_{\phi} \sim x^{-j_{*}}$?

Moments: $\quad f(j) \equiv \int_{0}^{1} \frac{d x}{x} x^{j} f(x) \propto\langle p| \phi \partial_{+}^{j} \phi|p\rangle$
\equiv matrix element of \mathcal{O}_{j} : definite boost j \& dimension Δ.
$\operatorname{DGLAP} \Leftrightarrow \Delta(j)=d-2+j+\frac{\lambda^{2}}{(4 \pi)^{4}}\left[\frac{1}{6}-\frac{1}{j(j+1)}\right]$

Expect: high-energy limit should involve full transverse plane.
Focus on ϕ^{4} CFT in $d=4-\epsilon$ (Wilson-Fisher).
There is a natural transverse shadow:
[Simmons-Duffin\& Kravchuk 'I8]

Spectrum of lightray operators in any CFT must be invariant. [SCH $\left.{ }^{\circ} 17\right]$

Idea: singularities in perturbation theory caused by free theory level crossing.

Resolve mixing using 2×2 matrix acting on $\left(\mathcal{O}_{\Delta}, \widetilde{\mathscr{O}}_{\Delta}\right)$:

$$
j(\Delta)-1=\left(\begin{array}{cc}
\Delta-2 & 0 \\
1 & 2-\Delta
\end{array}\right)+\frac{\lambda^{2}}{(4 \pi)^{4}}\left(\begin{array}{cc}
\ldots & 2 \\
\cdots & \cdots
\end{array}\right)+\ldots
$$

[SCH,Kologlu,Kravchuk,Meltzer\&Simmons-Duffin '22]
eigenvalues: $j_{ \pm}(\Delta)= \pm \sqrt{(\Delta-2)^{2}+2 \lambda^{2} /(4 \pi)^{4}}+$ regular

- matches poles:

$$
j_{+} \approx \Delta-2+\frac{\lambda^{2} /(4 \pi)^{4}}{\Delta-2}+\ldots
$$

Summary of results

from arXiv:2209.00008

- Method to resolve intersections (double-logs)
- Exponent $f_{\phi}(x) \sim x^{-j_{*}}$ in ϕ^{4} in $d=4-\epsilon$. Supports $j_{*} \approx 0.8<1$ in critical 3D Ising. [SCH+Zaharee '20]
- Discussed subleading powers, but could not resum.
- (spacelike-timelike map: $j^{\text {th }}$ moment of PDF \Leftrightarrow generalized calorimeter that weights Ei-l of each particle=‘detector’)

more on subleading powers (operators contribute $\sim x^{-j}$):

We could renormalize individual diagrams, but it is still an open problem how to exponentiate them.

QCD

DGLAP: $j=\Delta-2+2 \frac{\alpha_{s} C_{A}}{\pi}\left(\frac{1}{(\Delta-3)(\Delta-2)}+\frac{2}{\Delta-1}-H_{\Delta}+b_{0}\right)+O\left(\alpha_{s}^{2}\right)$
BFKL: $\quad j=1+\frac{\alpha_{s} C_{A}}{\pi}\left(2 \psi(1)-\psi\left(\frac{\Delta-1}{2}\right)-\psi\left(\frac{3-\Delta}{2}\right)\right)+O\left(\alpha_{s}^{2}\right)$

DGLAP-BFKL duality = curves meet analytically.

[Jaroscewicz '82; Salam '98; Brower,Polchinski,Strassler\&Tan '06; Ball\&Forte '07; lancu,Madrigal,Mueller,Soyez\&Triantafyllopoulos '|5,...]
In N=4 super Yang-Mills: [Kotikov,Lipatov,Rej,Staudacher\&Velizhanin '07;

QCD

DGLAP: $j=\Delta-2+2 \frac{\alpha_{s} C_{A}}{\pi}\left(\frac{1}{(\Delta-3)(\Delta-2)}+\frac{2}{\Delta-1}-H_{\Delta}+b_{0}\right)+O\left(\alpha_{s}^{2}\right)$
BFKL: $\quad j=1+\frac{\alpha_{s} C_{A}}{\pi}\left(2 \psi(1)-\psi\left(\frac{\Delta-1}{2}\right)-\psi\left(\frac{3-\Delta}{2}\right)\right)+O\left(\alpha_{s}^{2}\right)$

Natural speculation: singularities resolved by 2×2 matrix

$$
\begin{aligned}
j-1 & \approx\left(\begin{array}{cc}
\Delta-3 & 2 \alpha_{s} C_{A} / \pi \\
1 & 0
\end{array}\right) \\
& =\frac{\Delta-3 \pm \sqrt{(\Delta-3)^{2}+8 \alpha_{s} C_{A} / \pi}}{2} \\
& \rightarrow \frac{ \pm 2 \alpha_{s} C_{A}}{\pi|\Delta-3|}+\ldots \quad \text { matches } \quad \text { leading poles }
\end{aligned}
$$

cf [lancu,Madrigal,Mueller,Soyez\&Triantafyllopoulos '15]
Q : Is ignoring lower branch a $\sim x^{- \text {gap }}$ error?

Some considered projects:

- Combine DGLAP with nonlinear BK into 2×2 matrix?
- Better understand evolution of subeikonal terms?

Free QCD:

More potential projects:

Mathieu Giroux

- O(d-4) corrections to 2-loop BK or B-JIMWLK? (=piece of 3-loop BK in spacelike-timelike correspondence, namely $\left.H_{\mathrm{BK}}^{(3)}-H_{\mathrm{NGL}}^{(3)}\right)$
- Impact factors, dijet cross-section...?

