

Illinois Center for Advanced Studies of the Universe

Using the latest resonances from PDG in SMASH and their impact on cross sections

In collaboration with: R. Hirayama, J. Hammelmann, J. Karthein, P. Parotto, J. Noronha-Hostler, H. Elfner, C. Ratti, MUSES Collaboration Jordi Salinas San Martín

University of Illinois Urbana-Champaign

Roadmap to coupling SMASH and eHIJING

Latest PDG data

- Centralized hadronic database based on the PDG
- Tracks several particle properties, e.g., mass, width, isospin, etc.
- Has all hadrons and their reported branching ratios
- 760 particles
- Updated branching ratios vs. PDG16+
- Contains *-*** particles

A lower limiting temperature

Jordi Salinas San Martín

HRG partial pressures vs LQCD

The new PDG2021+ list is in agreement with the previous results from PDG2016+.

Disagreement with lattice data hints at missing strange resonances (Λ , Σ , Ξ , Ω)

see KLF Collaboration proposal at JLAB, 2207.10779

$$\frac{p}{T^4} = \phi_0 + \phi_{01} \cosh(\mu_S/T) + \phi_{10} \cosh(\mu_B/T) + \phi_{11} \cosh(\mu_B/T - \mu_S/T) + \phi_{12} \cosh(\mu_B/T - 2\mu_S/T) + \phi_{13} \cosh(\mu_B/T - 3\mu_S/T)$$

HRG partial pressures vs LQCD

Thermal model yields

Thermal model yields

experimental data at LHC energies

Modeling the list with intermediate states

The addition of more resonances and modification of decay channels has an effect on the particle spectra

BW+direct decays	$\pi^+ + \pi^-$
SMASH list	0.548 ± 0.001
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.551 ± 0.001
PDG2021+ $(1 \rightarrow \text{all decays})$	0.523 ± 0.001
BW+SMASH	$\pi^+ + \pi^-$
SMASH list	0.5463 ± 0.0001
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.5467 ± 0.0001
Experiment	0.56965 ± 0.02505
Preliminary	
BW+direct decays	$K^+ + K^-$
SMASH list	0.906 ± 0.001
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.908 ± 0.001
$PDG2021+ (1 \rightarrow all decays)$	0.907 ± 0.001
BW+SMASH	$K^+ + K^-$
SMASH list	0.9205 ± 0.0005
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.9167 ± 0.0005
$\frac{\text{PDG2021+} (1 \rightarrow 2 \text{ decays})}{\text{Experiment}}$	$\begin{array}{c} 0.9167 \pm 0.0005 \\ 0.91955 \pm 0.01357 \end{array}$

Data: PRC **101**, 044907 (2020)

Jordi Salinas San Martín

BW+direct decays	$\pi^+ + \pi^-$
SMASH list	0.548 ± 0.001
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.551 ± 0.001
$PDG2021+ (1 \rightarrow all decays)$	0.523 ± 0.001
BW+SMASH	$\pi^+ + \pi^-$
SMASH list	0.5463 ± 0.0001
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.5467 ± 0.0001
Experiment	0.56965 ± 0.02505
Preliminary	
BW+direct decays	$K^+ + K^-$
SMASH list	0.906 ± 0.001
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.908 ± 0.001
PDG2021+ $(1 \rightarrow \text{all decays})$	0.907 ± 0.001
BW+SMASH	$K^+ + K^-$
SMASH list	0.9205 ± 0.0005
$PDG2021+ (1 \rightarrow 2 \text{ decays})$	0.9167 ± 0.0005
Experiment	0.91955 ± 0.01357

Data: PRC 101, 044907 (2020)

Cross section rescaling

9

Cross section rescaling

Cross section rescaling

Cross sections and string fragmentation

SMASH implements string excitation and fragmentation for hard processes

A string forms hadrons by producing quark-antiquark pairs (but should not be done simultaneously)

Cross sections and string fragmentation

SMASH implements string excitation and fragmentation for hard processes

$$f_{\sigma}(t) = (1 - f_0) \left(\frac{t - t_{\text{prod}}}{t_{\text{form}} - t_{\text{prod}}}\right)^{\alpha} + f_0$$

A string forms hadrons by producing quark-antiquark pairs (but should not be done simultaneously)

In SMASH a cross section scaling factor controls *when* hadrons are allowed to interact, i.e., normally at the point of closest approach

Cross sections and string fragmentation

SMASH implements string excitation and fragmentation for hard processes

A string forms hadrons by producing quark-antiquark pairs (but should not be done simultaneously)

In SMASH a cross section scaling factor controls *when* hadrons are allowed to interact, i.e., normally at the point of closest approach

$$f_{\sigma}(t) = (1 - f_0) \left(\frac{t - t_{\text{prod}}}{t_{\text{form}} - t_{\text{prod}}}\right)^{\alpha} + f_0$$

The scaling factor can be a function of time, to mimic a continuous formation process

SMASH on scaling factor: J. Phys. G **47**, 065101 (2020)

Previous study using GiBUU: Nucl. Phys. A **801**, 68 (2008)

Open-source code

Conclusions

- Lattice hints at additional strange hadronic states
- A new list, PDG21+, was built with the latest experimental data available
- The new resonances come with a need to retune cross sections
- Final state hadronic interactions can be studied as functions of formation times
- If SMASH is used as a hadron scattering phase evolver, one wants a consistent treatment of the particle list → updated SMASH particle list

Outlook

- We have to make sure to use the same resonances in SMASH and eHIJING
- We can test the formation time dependence of final state interactions by modifying the scaling factor
- Previous studies have found that indeed time dependent cross-sections seproduce data more accurately
- Extensions of these studies can be tested on HERMES and EMC data at low energies
- Further extrapolation to cover EIC can be done by coupling to PYTHIA