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Isovector axial form factors
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Poleat £ = () due to massless pion exchange



Pion pole in GPD

Generalized Parton Distributions
= x-dependent form factors
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First indication from lattice QCD? Bhattacharya, et al. (2023)



Singlet axial form factors

Form factor of Jg' = Zq qY“vsq

ZC}:

(Pa]J8|P) = (P2) |¥*9594(t) + 52 gp (1) | u(Py)

2

In massless QCD, the current is classically conserved
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Pole at { = () due to massless 7Jij meson exchange?



Chiral anomaly

Quantum mechanically, the current is not conserved
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In real QCD, there is no massless pole in gp(t) due to pole cancellation



Gravitational form factors

Nucleon matrix element of the energy momentum tensor G)O“B
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In massless QCD, ©%F is classically traceless
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Pole at £ = () due to massless spin-0 glueball exchange?



Trace anomaly

Quantum mechanically, the trace is nonzero
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In real QCD, there is no massless pole in- D(t) due to pole cancellation



Anomalies relate form factors
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Chiral anomaly ~ 2Mga(t) +
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Form factors are moments of GPDs
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mmm) Anomalies relate GPDs!



Deeply Virtual Compton Scattering

Generalized
Bjorken limit
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Factorization proof Collins, Freund (1998); Ji, Osborne (1998)
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The box diagram ) b
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In all the previous works on DVCS, the hard part is
computedat £ A0 and ¢t = ( A Y
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Naively, introducing t # 0 only produces
higher twist corrections of order t/()* ] ~__“~7 ]
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However, calculations with £ 75 () can reveal anomaly poles. Tarasov, Venugopalan (2019,2021)
Beware the box diagram.

t #+ 0 also naturally cuts off the collinear singularity = alternative regularization scheme
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(Showing only the pole terms. For a complete result, see 2305.09431)

One-loop result
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Naively, the new terms break QCD factorization. (or OPE is violated, as lan puts it.)

However, we also computed the quark GPD of a gluon and found a pole
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Poles from the box diagram, both real and imaginary parts, can be systematically absorbed into
twist-two GPDs via an infrared subtraction procedure. Factorization restored.

However, this is an unusual subtraction. Absorb twist-4 GPD into twist-2.



The fate of anomaly poles

After absorbed into twist-2 GPD, the anomaly pole becomes a part of the GPD
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exactly reproduce the anomaly pole!

Twist-2 and twist-4 GPDs related by the chiral anomaly
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D-term and gluon condensate

Trace anomaly pole induced in the Polyakov-Weiss D-term of unpol GPDs
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Summary

Anomalies relate form factors
Form factors are moments of GPDs

- Anomalies relate GPDs

GPDs encode profound aspects of QCD such as chiral symmetry breaking, origin of mass.

Any implications for small-x physics?
Small-x behavior of g,(x)? € talk by Andrey

Small-x behavior of twist-2 and twist-4 GPD.
Is there a zero mode?

YH, Zhao (2020), Radyushkin, Zhao (2021)
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