NLO corrections: <u>single, double hadron production and total cross sections</u> in DIS at small x

Jamal Jalilian-Marian

Baruch College and the City University of New York Graduate Center

SURGE collaboration meeting June 28th-30th, 2023

QCD at high energy/small x: gluon saturation

CGC: a framework for multi-particle production in high energy collisions at small x (low p_t)

 $\mathbf{x} \leq \mathbf{0.01}$ $\alpha_s \ln \left(x_v / x \right) \sim 1$

CGC at RHIC

Single and double inclusive hadron production in dA collisions

Dumitru, Hayashigaki, JJM, NPA770 (2006) 57

Albacete, Marquet, PRL105 (2010) 162301

Recent review by A. Morreale and F. Salazar, e-print: 2108.08254

Toward precision: NLO corrections to <u>inclusive</u> observables in <u>DIS at small x</u>

Based on F. Bergabo and JJM:

PRD 107 (2023) 5, 054036 (dihadrons: transverse photon) JHEP 01 (2023) 095 (single inclusive hadrons: longitudinal photon) PRD 106 (2022) 5, 054035 (dihadrons: longitudinal photon) NPA 1018 (2022) 122358 (coherent e-loss in dihadron production)

NLO corrections – real diagrams

3-parton production: Ayala, Hentschinski, JJM, Tejeda-Yeomans PLB 761 (2016) 229 and NPB 920 (2017) 232

NLO corrections – virtual diagrams

<u>F. Bergabo</u> and JJM, dihadrons, 2207.03606, 2301.03117

- P. Taels et al., dijets, 2204.11650
- P. Caucal et al., dijets, 2108.06347,.....

$$\begin{array}{rcl} \frac{\sigma_{1-1}^{\mathrm{real},L}}{d^2\mathbf{p}\,d^2\mathbf{q}\,dy_1\,dy_2} &=& \frac{2e^2g^2Q^2N_c^2z_1^2(1-z_2)^2(z_1^2+(1-z_2)^2)}{(2\pi)^{10}z_1}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(|\mathbf{x}_{12'}|Q_2)\Delta_{011'}^{(3)} \\ &=& [S_{122'1'}-S_{12}-S_{12'}-1]\,e^{\mathbf{p}\cdot(\mathbf{x}_1'-\mathbf{x}_1)}e^{i\mathbf{q}\cdot(\mathbf{x}_2'-\mathbf{x}_2)}e^{i\frac{z}{z}_1^+\mathbf{p}\cdot(\mathbf{x}_1'-\mathbf{x}_1)}\delta(1-z_1-z_2-z), \\ &=& \frac{\sigma_{1-2}^2}{d^2\mathbf{p}\,d^2\mathbf{q}\,dy_1\,dy_2} &=& \frac{2e^2g^2Q^2N_c^2z_1^2(1-z_1)^2(z_2^2+(1-z_1)^2)}{(2\pi)^{10}z_2}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_1)K_0(|\mathbf{x}_{12'}|Q_1)\Delta_{22'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2(1-z_1)(1-z_2)(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(|\mathbf{x}_{12'}|Q_1)\Delta_{22'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1z_2(1-z_1)(1-z_2)(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(|\mathbf{x}_{12'}|Q_1)K_0(|\mathbf{x}_{12'}|Q_1)\\ &=& \frac{2e^2g^2Q^2N_c^2z_1z_2(1-z_1)(1-z_2)^2(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{11'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1z_2(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{5e^2g^2Q^2N_c^2z_1z_2(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_2(1-z_1))^2}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{5e^2g^2Q^2N_c^2z_1^2z_2(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{5e^2g^2Q^2N_c^2z_1^2z_2(z_2(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{5e^2g^2Q^2N_c^2z_1^2z_2(z_2(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{5e^2g^2Q^2N_c^2z_1^2z_2(z_2(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{5e^2g^2Q^2N_c^2z_2^2(z_2(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{5e^2g^2Q^2N_c^2z_2^2(z_2(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^$$

• Ultraviolet:

Real corrections are UV finite

UV divergences cancel among virtual corrections

$$\mathbf{k}
ightarrow \infty$$
 or $\mathbf{x_3}
ightarrow \mathbf{x_i}$

 $(d\sigma_5 + d\sigma_{11})_{UV} = 0$ $(d\sigma_6 + d\sigma_{12})_{UV} = 0$ $(d\sigma_9 + d\sigma_{10} + d\sigma_{14(1)} + d\sigma_{14(2)})_{UV} = 0$

• Soft:

$\mathbf{k}^{\mu} ightarrow \mathbf{0} \ (\mathbf{x_3} ightarrow \infty \ \mathbf{AND} \ \mathbf{z} ightarrow \mathbf{0})$

Soft divergences cancel between real and virtual corrections

$$(d\sigma_{1-1} + d\sigma_{9})_{soft} = 0,$$

$$\left(d\sigma_{1-2} + d\sigma_{13}^{(1)} + d\sigma_{13}^{(2)}\right)_{soft} = 0$$

$$(d\sigma_{3-3} + d\sigma_{4-4} + d\sigma_{3-4})_{soft} = 0$$

$$(d\sigma_{1-3} + d\sigma_{1-4})_{soft} = 0$$

$$(d\sigma_{2-3} + d\sigma_{2-4})_{soft} = 0$$

$$(d\sigma_{5} + d\sigma_{7})_{soft} = 0$$

$$\left(d\sigma_{11} + d\sigma_{14}^{(1)}\right)_{soft} = 0$$

$$2$$

• Rapidity: $\mathbf{z} ightarrow \mathbf{0}$, but finite k_t

$$\int_{0}^{1} \frac{dz}{z} = \int_{0}^{z_{f}} \frac{dz}{z} + \int_{z_{f}}^{1} \frac{dz}{z}$$

rapidity divergences are absorbed into JIMWLK evolution of dipoles and quadrupoles

$$\begin{split} \frac{d\sigma_{\rm NLO}^{L}}{d^{2}\mathbf{p}\,d^{2}\mathbf{q}\,dy_{1}\,y_{2}} &= \frac{2e^{2}g^{2}Q^{2}N_{c}^{2}(z_{1}z_{2})^{3}}{(2\pi)^{10}}\,\delta(1-z_{1}-z_{2})\int_{0}^{z_{f}}\frac{dz}{z}\int d^{10}\mathbf{x}\,K_{0}(|\mathbf{x}_{12}|Q_{1})K_{0}(|\mathbf{x}_{1'2'}|Q_{1})\\ e^{i\mathbf{p}\cdot\mathbf{x}_{1'1}}e^{i\mathbf{q}\cdot\mathbf{x}_{2'2}} \Bigg\{ \left(\tilde{\Delta}_{12}+\tilde{\Delta}_{22'}-\tilde{\Delta}_{12'}\right)S_{132'1'}S_{23} + \left(\tilde{\Delta}_{1'2'}+\tilde{\Delta}_{22'}-\tilde{\Delta}_{21'}\right)S_{1'321}S_{2'3} \\ &+ \left(\tilde{\Delta}_{12}+\tilde{\Delta}_{11'}-\tilde{\Delta}_{21'}\right)S_{322'1'}S_{13} + \left(\tilde{\Delta}_{1'2'}+\tilde{\Delta}_{11'}-\tilde{\Delta}_{12'}\right)S_{32'21}S_{1'3} \\ &- \left(\tilde{\Delta}_{11'}+\tilde{\Delta}_{22'}+\tilde{\Delta}_{12}+\tilde{\Delta}_{1'2'}\right)S_{122'1'} - \left(\tilde{\Delta}_{12}+\tilde{\Delta}_{1'2'}-\tilde{\Delta}_{12'}-\tilde{\Delta}_{21'}\right)S_{12}S_{1'2'} \\ &- \left(\tilde{\Delta}_{11'}+\tilde{\Delta}_{22'}-\tilde{\Delta}_{12'}-\tilde{\Delta}_{21'}\right)S_{11'}S_{22'} - 2\tilde{\Delta}_{12}\left(S_{13}S_{23}-S_{12}\right) - 2\tilde{\Delta}_{1'2'}\left(S_{1'3}S_{2'3}-S_{1'2'}\right) \Bigg\} \end{split}$$

JIMWLK evolution of quadrupoles JIMWLK evolution of dipoles

$$\tilde{\Delta}_{12} \equiv \frac{(\mathbf{x_1} - \mathbf{x_2})^2}{(\mathbf{x_1} - \mathbf{x_3})^2(\mathbf{x_2} - \mathbf{x_3})^2}$$

• Collinear:

$$\frac{1}{(p+k)^2} = \frac{1}{|\overrightarrow{p}||\overrightarrow{k}|(1-\cos\theta)} \longrightarrow \infty \quad as \quad \theta \to 0$$

Collinear divergences are absorbed into evolution of parton-hadron fragmentation functions

•Ultraviolet

Real corrections are UV finite UV divergences cancel among virtual corrections

•Soft

Soft divergences cancel between real and virtual corrections

•Collinear

Collinear divergences are absorbed into hadron fragmentation functions

•Rapidity

rapidity divergences are absorbed into JIMWLK evolution of dipoles, quadrupoles

 $\sigma^{\gamma^*A \to h_1 h_2 X} = \sigma_{LO} \otimes \text{JIMWLK} + \sigma_{LO} \otimes D_{h_1/q}(z_1, \mu^2) D_{h_2/\bar{q}}(z_2, \mu^2) + \sigma_{NLO}^{\text{finite}}$

connecting CGC to TMDs,...., phenomenology: EIC, UPC at the LHC,...

EIC

kinematics of inclusive dihadron production

Aschenauer et al. arXiv:1708.01527

Fig. courtesy of Xiaoxuan Chu

transition region: from large x to small x

Single inclusive hadron production in DIS at small x: NLO

JHEP 01 (2023) 095 (longitudinal photon)

Larger kinematic phase space at EIC

Sudakov (can it be avoided?)

Dipoles only

Forward rapidity: quark or antiquark production

LO: integrate out quark

Single inclusive hadron production in DIS at small x: NLO

start with NLO corrections to dihadron production and integrate out quark

cancellations among diagrams

Single inclusive hadron production in DIS at small x: NLO

all terms with quadrupoles cancel; only <u>dipoles</u> contribute to the cross section cancellations of divergences as before

$$\sigma^{\gamma^*A \to hX} = \sigma_{LO} \otimes \text{JIMWLK} + \sigma_{LO} \otimes D_{h/\bar{q}}(z_h, \mu^2) + \sigma_{NLO}^{\text{finite}}$$

phenomenology: need to consider hadronization of any of the 3 partons

relation to TMD,...? negative cross sections?

DIS structure functions at small x: NLO

G. Beuf, arXiv:1708.06557 Beuf, Lappi, Paatelainen, arXiv:2112.03158

integrate out all produced partons compare with results derived using LC perturbation theory

F. Bergabo, JJM, in progress

TO DO (?):

structure functions:

compare with earlier results based on LCPT

SIDIS:

include transverse photons,...., include gluon-hadron fragmentation, TMDs,...

Inclusive dihadrons:

BtoB limit, Sudakov, TMDs,..., include quark-gluon production,...

SUGGESTIONS WELCOME!