NLO corrections to back-to-back dijet electroproduction at small x

Tomasz Stebel
Institute of Theoretical Physics, Jagiellonian University, Kraków

In collaboration with:
Paul Caucal, Farid Salazar, Björn Schenke and Raju Venugopalan
based on 2304.03304 and work in progress
SURGE 2023

Outline

- Dijet production in DIS
- CGC calculation at LO and NLO
, Back-to-back limit
- Numerical results

Dijet production in DIS

$$
\frac{\mathrm{d} \sigma^{e+A \rightarrow e^{\prime}+q \bar{q}+X}}{\mathrm{~d} x_{\mathrm{Bj}} \mathrm{~d} Q^{2} \mathrm{~d}^{2} \boldsymbol{k}_{1 \perp} \mathrm{~d}^{2} \boldsymbol{k}_{2 \perp} \mathrm{~d} \eta_{1} \mathrm{~d} \eta_{2}}=\sum_{\lambda=\mathrm{L}, \mathrm{~T}} f_{\lambda}\left(x_{\mathrm{Bj}}, Q^{2}\right) \frac{\mathrm{d} \sigma_{\lambda}^{*}+A \rightarrow q \bar{q}+X}{\mathrm{~d}^{2} \boldsymbol{k}_{1 \perp} \mathrm{~d}^{2} \boldsymbol{k}_{2 \perp} \mathrm{~d} \eta_{1} \mathrm{~d} \eta_{2}} .
$$

$$
\begin{aligned}
& f_{\lambda=\mathrm{L}}\left(x_{\mathrm{Bj}}, Q^{2}\right)=\frac{\alpha_{\mathrm{em}}}{\pi Q^{2} x_{\mathrm{Bj}}}(1-y), \\
& f_{\lambda=\mathrm{T}}\left(x_{\mathrm{Bj}}, Q^{2}\right)=\frac{\alpha_{\mathrm{em}}}{2 \pi Q^{2} x_{\mathrm{Bj}}}\left[1+(1-y)^{2}\right],
\end{aligned}
$$

CGC calculation at LO

$$
\begin{aligned}
\frac{\mathrm{d} \sigma^{\gamma_{\lambda}^{\star}}+A \rightarrow q \bar{q}+X}{\mathrm{~d}^{2} \boldsymbol{k}_{1 \perp} \mathrm{~d}^{2} \boldsymbol{k}_{2 \perp} \mathrm{~d} \eta_{1} \mathrm{~d} \eta_{2}} & \left.\right|_{\mathrm{LO}} \\
\frac{\alpha_{\mathrm{em}} e_{f}^{2} N_{c} \delta_{z}^{(2)}}{(2 \pi)^{6}} \int \mathrm{~d}^{8} & \boldsymbol{X}_{\perp} e^{-i \boldsymbol{k}_{1 \perp} \cdot \boldsymbol{r}_{x x^{\prime}}} e^{-i \boldsymbol{k}_{2 \perp} \cdot \boldsymbol{r}_{y y^{\prime}}} \\
& \times \Xi_{\mathrm{LO}}\left(\boldsymbol{x}_{\perp}, \boldsymbol{y}_{\perp} ; \boldsymbol{x}_{\perp}^{\prime}, \boldsymbol{y}_{\perp}^{\prime}\right) \mathcal{R}_{\mathrm{LO}}^{\lambda}\left(\boldsymbol{r}_{x y}, \boldsymbol{r}_{x^{\prime} y^{\prime}}\right)
\end{aligned}
$$

Impact factor:

$$
\begin{aligned}
& \mathcal{R}_{\mathrm{LO}}^{\mathrm{L}}\left(\boldsymbol{r}_{x y}, \boldsymbol{r}_{x^{\prime} y^{\prime}}\right)=8 z_{1}^{3} z_{2}^{3} Q^{2} K_{0}\left(\bar{Q} r_{x y}\right) K_{0}\left(\bar{Q} r_{x^{\prime} y^{\prime}}\right), \\
& \mathcal{R}_{\mathrm{LO}}^{\mathrm{T}}\left(\boldsymbol{r}_{x y}, \boldsymbol{r}_{x^{\prime} y^{\prime}}\right)=2 z_{1} z_{2}\left[z_{1}^{2}+z_{2}^{2}\right] \frac{\boldsymbol{r}_{x y} \cdot \boldsymbol{r}_{x^{\prime} y^{\prime}}}{r_{x y} r_{x^{\prime} y^{\prime}}} \bar{Q}^{2} K_{1}\left(\bar{Q} r_{x y}\right) K_{1}\left(\bar{Q} r_{x^{\prime} y^{\prime}}\right),
\end{aligned}
$$

Color correlator:

$$
\begin{aligned}
\Xi_{\mathrm{LO}}\left(\boldsymbol{x}_{\perp}, \boldsymbol{y}_{\perp} ; \boldsymbol{x}_{\perp}^{\prime}, \boldsymbol{y}_{\perp}^{\prime}\right) & =\frac{1}{N_{c}}\left\langle\operatorname{Tr}\left[\left(V\left(\boldsymbol{x}_{\perp}\right) V^{\dagger}\left(\boldsymbol{y}_{\perp}\right)-\mathbb{1}\right)\left(V\left(\boldsymbol{y}_{\perp}^{\prime}\right) V^{\dagger}\left(\boldsymbol{x}_{\perp}^{\prime}\right)-\mathbb{1}\right)\right]\right\rangle_{Y} \\
& =\left\langle Q_{x y, y^{\prime} x^{\prime} x^{\prime}}-D_{x y}-D_{y^{\prime} x^{\prime}}+1\right\rangle_{Y},
\end{aligned}
$$

where Wilson line: $\quad V\left(x_{\perp}\right)=P \exp \left(i g \int \mathrm{~d} x^{-} A_{\mathrm{cl}}^{+}\left(x_{\perp}, x^{-}\right)\right)$

NLO corrections

R1

P. Caucal, F. Salazar and R. Venugopalan (2021)

NLO impact factor:

$$
\begin{aligned}
& \mathrm{d} \sigma_{\mathrm{R}_{2} \times \mathrm{R}_{2}, \mathrm{sud} 2}=\frac{\alpha_{\mathrm{em}} e_{f}^{2} N_{\delta} \delta_{z}^{(2)}}{(2 \pi)^{6}} \int \mathrm{~d}^{8} \boldsymbol{X}_{\perp} e^{-i \boldsymbol{k}_{1_{1}} \cdot \boldsymbol{r}_{x_{z} \prime^{\prime}}-i \boldsymbol{k}_{2 \perp} \cdot \boldsymbol{r}_{y y^{\prime}} \mathcal{R}_{\mathrm{LO}}^{\lambda}\left(\boldsymbol{r}_{x y}, \boldsymbol{r}_{x^{\prime} y^{\prime}}\right)} \\
& \quad \times C_{F} \Xi_{\mathrm{LO}}\left(\boldsymbol{x}_{\perp}, \boldsymbol{y}_{\perp} ; \boldsymbol{x}_{\perp}^{\prime}, \boldsymbol{y}_{\perp}^{\prime}\right) \times \frac{\alpha_{s}}{\pi} \int_{0}^{1} \frac{\mathrm{~d} \xi}{\xi}\left[1-e^{-i \xi \boldsymbol{k}_{x_{1} \perp} \cdot \boldsymbol{r}_{x x^{\prime}}}\right] \ln \left(\frac{\boldsymbol{k}_{1 \perp}{ }^{2} \boldsymbol{r}_{x x^{\prime}}^{2} R^{2} \xi^{2}}{c_{0}^{2}}\right)
\end{aligned}
$$

$$
\mathrm{d} \sigma_{\mathrm{R}_{2} \times \mathrm{R}_{2}^{\prime}, \mathrm{sud} 2}=\frac{\alpha_{\mathrm{em}} e_{f}^{2} N_{c} \delta_{z}^{(2)}}{(2 \pi)^{6}} \int \mathrm{~d}^{8} \boldsymbol{X}_{\perp} e^{-i \boldsymbol{k}_{1 \perp} \cdot \boldsymbol{r}_{x z^{\prime}}-i \boldsymbol{k}_{2 \perp} \cdot \boldsymbol{r}_{y y^{\prime}}} \mathcal{R}_{\mathrm{LO}}^{\lambda}\left(\boldsymbol{r}_{x y}, \boldsymbol{r}_{x^{\prime} y^{\prime}}\right)
$$

$$
\times \Xi_{\mathrm{NLO}, 3}\left(\boldsymbol{x}_{\perp}, \boldsymbol{y}_{\perp} ; \boldsymbol{x}_{\perp}^{\prime}, \boldsymbol{y}_{\perp}^{\prime}\right) \times \frac{\left(-\alpha_{s}\right)}{\pi} \int_{0}^{1} \frac{\mathrm{~d} \xi}{\xi}\left[1-e^{-i \xi \boldsymbol{k}_{1 \perp} \cdot \boldsymbol{r}_{⿰ y^{\prime}}}\right] \ln \left(\frac{\boldsymbol{P}_{\perp}^{2} \boldsymbol{r}_{\boldsymbol{r y}}^{2}, \xi^{2}}{z_{2}^{2} c_{0}^{2}}\right)
$$

$$
\times \frac{e^{-i \boldsymbol{k}_{g \perp} \perp \boldsymbol{r}_{z z^{\prime}}}}{\left(\boldsymbol{k}_{g \perp}-\frac{z_{2}}{z_{1}} k_{1 \perp}\right)^{2}}\left\{8 z_{1} z_{2}^{3}\left(1-z_{2}\right)^{2} Q^{2}\left(1+\frac{z_{g}}{z_{1}}+\frac{z_{g}^{2}}{2 z_{1}^{2}}\right) K_{0}\left(\bar{Q}_{\mathrm{R} 2} r_{x y}\right) K_{0}\left(\bar{Q}_{\mathrm{R} 2} r_{x^{\prime} y^{\prime}}\right) \delta_{z}^{(3)}\right.
$$

$$
\left.-\mathcal{R}_{L O}^{L}\left(\boldsymbol{r}_{x y}, \boldsymbol{r}_{x^{\prime} y}\right) \Theta\left(z_{1}-z_{g}\right) \delta_{z}^{(2)}\right\}+(1 \leftrightarrow 2)
$$

 $+(1 \leftrightarrow 2)$

 $+(1 \leftrightarrow 2)+c . c\}.-\frac{\alpha_{\text {em }} e_{N}^{2} N_{6} \sigma_{3}^{(2)}}{(2 \pi)^{8}} \alpha_{s} \Theta\left(z_{f}-z_{g}\right) \times$ "slow"

Very hard to do numerics...

$$
\begin{aligned}
& \operatorname{dod}
\end{aligned}
$$

Back-to-back limit (LO)

Back-to-back limit:

$$
q_{\perp}=k_{1 \perp}+k_{2 \perp}
$$

$$
\boldsymbol{P}_{\perp}=z_{2} \boldsymbol{k}_{1 \perp}-z_{1} \boldsymbol{k}_{2 \perp}
$$

$$
q_{\perp}, Q_{s} \ll P_{\perp}
$$

High energy limit: $P_{\perp} \ll W$
Factorization at the LO:

$$
\mathrm{d} \sigma_{\mathrm{LO}}^{\gamma_{\mathrm{J}}^{\star}+A \rightarrow q \bar{q}+X}=\alpha_{\mathrm{em}} e_{f}^{2} \alpha_{s} \delta_{z}^{(2)} \mathcal{H}_{\mathrm{LO}}^{\lambda, i j}\left(\boldsymbol{P}_{\perp}\right) \int \frac{\mathrm{d}^{2} \boldsymbol{r}_{b b^{\prime}}}{(2 \pi)^{4}} e^{-i \boldsymbol{q}_{\perp} \cdot \boldsymbol{r}_{b b^{\prime}}} \hat{G}_{Y}^{i j}\left(\boldsymbol{b}_{\perp}, \boldsymbol{b}_{\perp}^{\prime}\right)+\mathcal{O}\left(\frac{q_{\perp}}{P_{\perp}}, \frac{Q_{s}}{P_{\perp}}\right)
$$

where the hard factors:

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{LO}}^{\lambda=\mathrm{L}, i j}\left(\boldsymbol{P}_{\perp}\right)=16 z_{1}^{3} z_{2}^{3} Q^{2} \frac{\boldsymbol{P}_{\perp}^{i} \boldsymbol{P}_{\bar{\perp}}^{j}}{\left(\boldsymbol{P}_{\perp}^{2}+\bar{Q}^{2}\right)^{4}}, \\
& \mathcal{H}_{\mathrm{LO}}^{\lambda=\mathrm{T}, i j}\left(\boldsymbol{P}_{\perp}\right)=z_{1} z_{2}\left(z_{1}^{2}+z_{2}^{2}\right)\left\{\frac{\delta^{i j}}{\left(\boldsymbol{P}_{\perp}^{2}+\bar{Q}^{2}\right)^{2}}-\frac{4 \bar{Q}^{2} \boldsymbol{P}_{\perp}^{i} \boldsymbol{P}_{\perp}^{j}}{\left(\boldsymbol{P}_{\perp}^{2}+\bar{Q}^{2}\right)^{4}}\right\}
\end{aligned}
$$

and Weizsäcker-Williams (WW) distribution:

$$
\hat{G}_{Y}^{i j}\left(\boldsymbol{b}_{\perp}, \boldsymbol{b}_{\perp}^{\prime}\right) \equiv \frac{-2}{\alpha_{s}}\left\langle\operatorname{Tr}\left[V\left(\boldsymbol{b}_{\perp}\right)\left(\partial^{i} V^{\dagger}\left(\boldsymbol{b}_{\perp}\right)\right) V\left(\boldsymbol{b}_{\perp}^{\prime}\right)\left(\partial^{j} V^{\dagger}\left(\boldsymbol{b}_{\perp}^{\prime}\right)\right)\right]\right\rangle_{Y}
$$

One obtains Sudakov logs:

$$
\begin{aligned}
& \mathrm{d} \sigma^{\gamma_{\lambda}^{*}+A \rightarrow q \bar{q}+X} \propto \mathcal{H}\left(Q, \boldsymbol{P}_{\perp}\right) \int \mathrm{d}^{2} \mathbf{r}_{b b^{\prime}} e^{-i \boldsymbol{q}_{\perp} \cdot \mathbf{r}_{b b^{\prime}}} \\
& {\left[1+\frac{\alpha_{s} N_{c}}{4 \pi} \ln ^{2}\left(\frac{\boldsymbol{P}_{\perp}^{2} \mathbf{r}^{2}}{c_{0}^{2}}\right)+\cdots+\alpha_{s} \ln \left(\Lambda_{f}^{-} / \Lambda^{-}\right) \mathcal{K}_{L L} \otimes\right] \widetilde{G}_{Y}\left(\mathbf{r}_{b b^{\prime}}\right) }
\end{aligned}
$$

But with the wrong (+) sign.
Should be compared to result by Mueller, Xiao, Yuan (2013) for joint small- x and soft gluon resummation:

$$
\begin{array}{r}
\mathrm{d} \sigma_{\lambda}^{\gamma_{\lambda}^{*}+A \rightarrow q \bar{q}+X} \propto \mathcal{H}\left(Q, \boldsymbol{P}_{\perp}\right) \int \frac{\mathrm{d}^{2} \mathbf{r}_{b b^{\prime}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\perp} \cdot \mathbf{r}_{b b^{\prime}}} \widetilde{G}_{Y}^{0}\left(\mathbf{r}_{b b^{\prime}}\right) e^{-S_{\mathrm{Sud}}\left(\mathbf{r}_{b b^{\prime}}, \boldsymbol{P}_{\perp}\right)} \\
\text { Sudakov factor: } \quad S_{\mathrm{Sud}}\left(\mathbf{r}_{b b^{\prime}}, P_{\perp}\right)=\frac{\alpha_{s} N_{c}}{\pi} \int_{c_{0}^{2} / \mathbf{r}_{b b^{\prime}}^{2}}^{P_{\perp}^{2}} \frac{1}{2} \ln \left(\frac{P_{\perp}^{2}}{\mu^{2}}\right)
\end{array}
$$

Back-to-back limit (NLO)

- Solution by Taels, Altinoluk, Marquet, Beuf (2022):

One needs to impose kinematical contraint for small-x evolution and get correct Sudakov double log:

$$
\begin{gathered}
\mathrm{d} \sigma^{\gamma_{\lambda}^{*}+A \rightarrow q \bar{q}+X} \propto \mathcal{H}\left(Q, \boldsymbol{P}_{\perp}\right) / \mathrm{d}^{2} \mathbf{r}_{b b^{\prime}} e^{-i \boldsymbol{q}_{\perp} \cdot \mathbf{r}_{b b^{\prime}}} \\
{[\underbrace{-\frac{\alpha_{s} N_{c}}{4 \pi} \ln ^{2}\left(\frac{\boldsymbol{P}_{\perp}^{2} \mathbf{r}_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)}_{\text {Correct Sudakov double log }}-\frac{\alpha_{s}}{\pi} s_{L} \ln \left(\frac{\boldsymbol{P}_{\perp}^{2} \mathbf{r}_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)+\underbrace{\mathcal{K}_{L L, \text { coll }}}_{\substack{\text { Kinematically improved } \\
\text { small-x evolution }}} \otimes \otimes \widetilde{G}_{Y}\left(\mathbf{r}_{b b^{\prime}}\right)+\mathcal{O}\left(\alpha_{s}\right)}
\end{gathered}
$$

Back-to-back IMnit(NLO)

$$
\begin{aligned}
\left\langle\mathrm{d} \sigma_{\mathrm{LO}}^{(0), \lambda}+\alpha_{s} \mathrm{~d} \sigma_{\mathrm{NLO}}^{(0), \lambda}\right\rangle_{\eta_{f}} & =\frac{1}{2} \mathcal{H}_{\mathrm{LO}}^{\lambda, i i} \int \frac{\mathrm{~d}^{2} \boldsymbol{r}_{b b^{\prime}}}{(2 \pi)^{4}} e^{-i \boldsymbol{q}_{\perp} \cdot \boldsymbol{r}_{b b^{\prime}}} \hat{G}_{\eta_{f}}^{0}\left(\boldsymbol{r}_{b b^{\prime}}, \mu_{0}\right)\left\{1+\frac{\alpha_{s}\left(\mu_{R}\right)}{\pi}\left[-\frac{N_{c}}{4} \ln ^{2}\left(\frac{\boldsymbol{P}_{\perp}^{2} \boldsymbol{r}_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)\right.\right. \\
& \left.\left.-s_{L} \ln \left(\frac{\boldsymbol{P}_{\perp}^{2} \boldsymbol{r}_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)+\pi \beta_{0} \ln \left(\frac{\mu_{R}^{2} r_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)+\frac{N_{c}}{2} f_{1}^{\lambda}\left(\chi, z_{1}, R\right)+\frac{1}{2 N_{c}} f_{2}^{\lambda}\left(\chi, z_{1}, R\right)\right]\right\} \\
& +\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi} \mathcal{H}_{\mathrm{LO}}^{\lambda, i i} \int \frac{\mathrm{~d}^{2} \boldsymbol{r}_{b b^{\prime}}}{(2 \pi)^{4}} e^{-i \boldsymbol{q}_{\perp} \cdot \boldsymbol{r}_{b b^{\prime}}} \hat{h}_{\eta_{f}}^{0}\left(\boldsymbol{r}_{b b^{\prime}}, \mu_{0}\right)\left\{\frac{N_{c}}{2}\left[1+\ln \left(R^{2}\right)\right]-\frac{1}{2 N_{c}} \ln \left(z_{1} z_{2} R^{2}\right)\right\}
\end{aligned}
$$

- Factorized expression even at NLO!
- Single log calculated: coefficient,

$$
\mathrm{C}_{\mathrm{F}} \log \left(\frac{1}{z_{1} z_{2} R^{2}}\right)+N_{c} \log \left(1+\frac{Q^{2}}{M_{q \bar{q}}^{2}}\right)-\beta_{0}^{-}
$$

agrees with result obtained in the collinear Collins, Soper, Sterman (CSS) resummation.

Hatta, Xiao, Yuan, Zhou (2021)

Back-to-back limit (NLO)

$$
\begin{aligned}
\left\langle\mathrm{d} \sigma_{\mathrm{LO}}^{(0), \lambda}+\alpha_{s} \mathrm{~d} \sigma_{\mathrm{NLO}}^{(0), \lambda}\right\rangle_{\eta_{f}} & =\frac{1}{2} \mathcal{H}_{\mathrm{LO}}^{\lambda, i i} \int \frac{\mathrm{~d}^{2} \boldsymbol{r}_{b b^{\prime}}}{(2 \pi)^{4}} e^{-i \boldsymbol{q}_{\perp} \cdot \boldsymbol{r}_{b b^{\prime}}} \hat{G}_{\eta_{f}}^{0}\left(\boldsymbol{r}_{b b^{\prime}}, \mu_{0}\right)\left\{1++\frac{\alpha_{s}\left(\mu_{R}\right)}{\pi}\left[-\frac{N_{c}}{4} \ln ^{2}\left(\frac{\boldsymbol{P}_{\perp}^{2} \boldsymbol{r}_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)\right.\right. \\
& \left.\left.\quad-s_{L} \ln \left(\frac{\boldsymbol{P}_{\perp}^{2} \boldsymbol{r}_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)+\pi \beta_{0} \ln \left(\frac{\mu_{R}^{2} \boldsymbol{r}_{b b^{\prime}}^{2}}{c_{0}^{2}}\right)+\frac{N_{c}}{2} f_{1}^{\lambda}\left(\chi, z_{1}, R\right)+\frac{1}{2 N_{c}} f_{2}^{\lambda}\left(\chi, z_{1}, R\right)\right]\right\}
\end{aligned}
$$

Assumption: we can resum the large logs exponenting them:

$$
\mathcal{S}=\exp \left(-\int_{\frac{c_{0}^{2}}{r_{b b^{\prime}}^{\prime}}}^{\mu_{h}^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} \frac{\alpha_{s} N_{c}}{\pi}\left[\frac{1}{2} \ln \left(\frac{\mu_{h}^{2}}{\mu^{2}}\right)+\frac{s_{L}-\beta_{0}}{N_{c}}\right]\right)
$$

NLO hard coefficient functions

Longitudinal polarization of photon:

$$
\begin{aligned}
f_{1}^{\lambda=\mathrm{L}}\left(\chi, z_{1}, R\right) & =9-\frac{3 \pi^{2}}{2}-\frac{2 \pi^{2}}{27}-\frac{3}{2} \ln \left(\frac{z_{1} z_{2} R^{2}}{\chi^{2}}\right)-\ln \left(z_{1}\right) \ln \left(z_{2}\right)-\ln \left(1+\chi^{2}\right) \ln \left(\frac{1+\chi^{2}}{z_{1} z_{2}}\right) \\
& +\left\{\operatorname{Li}_{2}\left(\frac{z_{2}-z_{1} \chi^{2}}{z_{2}\left(1+\chi^{2}\right)}\right)-\frac{1}{4\left(z_{2}-z_{1} \chi^{2}\right)}\right. \\
& \left.+\frac{\left(1+\chi^{2}\right)\left(z_{2}\left(2 z_{2}-z_{1}\right)+z_{1}\left(2 z_{1}-z_{2}\right) \chi^{2}\right)}{4\left(z_{2}-z_{1} \chi^{2}\right)^{2}} \ln \left(\frac{z_{2}\left(1+\chi^{2}\right)}{\chi^{2}}\right)+(1 \leftrightarrow 2)\right\} \\
f_{2}^{\lambda=\mathrm{L}}\left(\chi, z_{1}, R\right) & =-8+\frac{19 \pi^{2}}{12}+\frac{3}{2} \ln \left(z_{1} z_{2} R^{2}\right)-\frac{3}{4} \ln ^{2}\left(\frac{z_{1}}{z_{2}}\right)-\ln (\chi) \\
+ & \left\{\frac{1}{4\left(z_{2}-z_{1} \chi^{2}\right)}+\frac{\left(1+\chi^{2}\right) z_{1}\left(z_{2}-\left(1+z_{1}\right) \chi^{2}\right)}{4\left(z_{2}-z_{1} \chi^{2}\right)^{2}} \ln \left(\frac{z_{2}\left(1+\chi^{2}\right)}{\chi^{2}}\right)\right. \\
& \left.+\frac{1}{2} \operatorname{Li}_{2}\left(z_{2}-z_{1} \chi^{2}\right)-\frac{1}{2} \operatorname{Li}_{2}\left(\frac{z_{2}-z_{1} \chi^{2}}{z_{2}}\right)+(1 \leftrightarrow 2)\right\} \quad \text { where } \quad \chi=\frac{Q}{M_{q \bar{q}}}
\end{aligned}
$$

Tranverse polarization: similar expressions.

WW TMD's evolution

TMD satisfies kinematically constrained evolution equation which is not closed (involves other than WW-type correlators).

For numerical evaluation we assume Gaussian approximation:

$$
\begin{aligned}
& \hat{G}^{i j}\left(\boldsymbol{r}_{b b^{\prime}}\right)=\frac{2 C_{F} S_{\perp}}{\alpha_{s}} \frac{\partial^{i} \partial^{j} \Gamma\left(\boldsymbol{r}_{b b^{\prime}}\right)}{\Gamma\left(\boldsymbol{r}_{b b^{\prime}}\right)}\left[1-\exp \left(-\frac{C_{A}}{C_{F}} \Gamma\left(\boldsymbol{r}_{b b^{\prime}}\right)\right)\right] \\
& \Gamma\left(\boldsymbol{r}_{b b^{\prime}}\right)=-\ln \left(S\left(\boldsymbol{r}_{b b^{\prime}}\right)\right) \quad S=\frac{1}{N_{c}}\left\langle\operatorname{Tr}\left[V\left(\boldsymbol{x}_{\perp}\right) V^{\dagger}\left(\boldsymbol{y}_{\perp}\right)\right]\right\rangle_{Y}
\end{aligned}
$$

WW TMD

S satisfies kinematically constrained BK equation

$$
\frac{\partial \mathcal{S}_{\eta}\left(\mathbf{r}_{b b^{\prime}}\right)}{\partial \eta}=\frac{\alpha_{s} N_{c}}{\pi} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}_{\perp}}{2 \pi} \Theta\left(\eta-\delta_{b b^{\prime} z}\right) \frac{\mathbf{r}_{b b^{\prime}}^{2}}{\mathbf{r}_{z b}^{2} \mathbf{r}_{z b^{\prime}}^{2}}\left[\mathcal{S}_{\eta-\delta_{z b}}\left(\mathbf{r}_{z b}\right) \mathcal{S}_{\eta-\delta_{z b^{\prime}}}\left(\mathbf{r}_{z b^{\prime}}\right)-\mathcal{S}_{\eta}\left(\mathbf{r}_{b b^{\prime}}\right)\right]
$$

Caucal, Salazar, Schenke, TS and Venugopalan (2023)

Numerical results for L polarization (without small-x evolution)

$$
\frac{\mathrm{d} \sigma_{\lambda}^{\gamma_{\lambda}^{*}+A \rightarrow \mathrm{dijet}+X}}{\mathrm{~d}^{2} \boldsymbol{P}_{\perp} \mathrm{d}^{2} \boldsymbol{q}_{\perp} \mathrm{d} \eta_{1} \mathrm{~d} \eta_{2}}=\mathrm{d} \sigma^{(0), \lambda}\left(P_{\perp}, q_{\perp}, \eta_{1}, \eta_{2}\right)+2 \sum_{n=1}^{\infty} \mathrm{d} \sigma^{(n), \lambda}\left(P_{\perp}, q_{\perp}, \eta_{1}, \eta_{2}\right) \cos (n \phi),
$$

Azimuthally averaged cross-section:

$$
v_{2}=\frac{d \sigma^{(2)}}{d \sigma^{(0)}} \text { anisotropy: }
$$

Summary

- We calculated back-to-back inclusive dijets cross-section up to NLO accuracy.
- We identify large Sudakov log (both double and single).
- To obtain correct sign of Sudakov double log we need kinematical constraint on small-x evolution (BK/JIMWLK).
- Hard coefficient functions are given by analytic expressions.
- We working on numerical results.

Thank you

