
ORNL is managed by UT-Battelle LLC for the US Department of Energy

The CARIBOu 2.0 system

Mathieu Benoit
Oak Ridge National Laboratory

S. Tang, M. Begel, H. Chen, T. Liu, D.
Matakias, H. Xu, E. Zhivun

Brookhaven National Laboratory

Max Pijacki, Thomas Koffas

Carleton University

22 Open slide master to edit

Outline

• The CARIBOu 1.x system
– Purpose and concept
– Example of use cases

• Software integration
• Firmware

• The CARIBOu 2.0 system
– Design plan summary
– Firmware and software

• Conclusion and perspectives

33 Open slide master to edit

The CARIBOu Framework
The CaRIBOu framework was originally developed in 2014, in collaboration between BNL (HW and Felix integration),

UNIGe, and CERN (FW and SW design) as a versatile platform for DAQ development of our prototypes

• Many chips produced during R&D with similar needs in terms of biases, power, and data transmission. To reduce
the development time, the framework is designed to provide re-usable software, firmware, and hardware that
minimize integration effort and reduce time to first data acquisition

• The accompanying Peary software provides an easy, user-friendly abstraction layer to hardware and facilitates
code re-use and sharing of resources (IPs, intermediate boards, etc.)

• The system was extensively used for the early CMOS sensor characterization, including the first prototype to
demonstrate radiation hardness beyond 1e15 neq/cm2

– Collaboration expanded to ANL, Bern, CERN, Liverpool

RD50-
MPW1/2 ATLASPix3

Development of FELIX based readout system for HV-CMOS sensor testbeam,
M. Benoit et al., J. Inst. Vol 14 issue 01 (2019), DOI 10.1088/1748-
0221/14/01/P01013

Development of a modular test system for the silicon sensor R&D of the ATLAS
Upgrade, M. Benoit et al., J. Inst. Vol 12 issue 01 (2017), DOI 10.1088/1748-
0221/12/01/P01008

Testbeam results of irradiated ams H18 HV-CMOS pixel sensor prototypes, M.
Benoit et al., J. Inst. Vol 13 (2018), arXiv:1611.02669

https://arxiv.org/abs/1611.02669

44 Open slide master to edit

The CARIBOu system : Hardware

55 Open slide master to edit

66 Open slide master to edit

77 Open slide master to edit

CaRIBOu (v1.x) Status
• Current platform based on Xilinx ZC706 has been revised

(v1.3) at BNL and distributed to users for ongoing projects
– Software and example firmware provided to users for the new

revision
– Production organized in collaboration with CERN

• The platform is being used in multiple project for the control
and readout of their pixel ASIC:
– CLIC (CLICpix1/2,C3PD, ATLASPix(2-3),CLICTD, Fastpix)

– RD50 (RD50Pix prototypes)
– ATLAS (ATLASPix series, CCPD)
– NASA/AMEGO (ASTROpix v1-2)

7

Test beam measurement of ams H35 HV-CMOS
capacitively coupled pixel sensor prototypes with
high-resistivity substrate, M. Benoit et al., J. Inst. Vol
13 (2018), arXiv:1712.08338

Developing the future of gamma-ray astrophysics
with monolithic silicon pixels, I. Brewer et al., NIMA,
10.1016/j.nima.2021.165795

Readout system and testbeam results of the RD50-
MPW2 HV-CMOS pixel chip, P. Sieberer et al,
arXiv:2201.08585 [physics.ins-det]

Performance of CMOS pixel sensor prototypes in
ams H35 and aH18 technology for the ATLAS ITk
upgrade, M. Khien et al. NIMA (2019)
DOI:10.1016/j.nima.2018.07.061CLICTD

ASTROPIXv1

~ 50 systems in use!

https://arxiv.org/abs/1712.08338
https://doi.org/10.1016/j.nima.2021.165795
https://arxiv.org/abs/2201.08585
https://www.sciencedirect.com/journal/nuclear-instruments-and-methods-in-physics-research-section-a-accelerators-spectrometers-detectors-and-associated-equipment/vol/924/suppl/C

88 Open slide master to edit

The Peary Framework

pearyd

Kernel drivers (meta-caribou)
• Interface to system
• Xilinx provided drivers for

• I2C
• SPI
• Access to PL register space
• Networking

The software name derives from the
smallest of the North American caribou
subspecies, found in the high Arctic islands
of Canada (Wikipedia).

19/04/2023 8

https://en.wikipedia.org/wiki/Peary_caribou

99 Open slide master to edit

The Peary Framework

pearyd

Hardware Abstraction Layer
• Implementation specific to

daughter board (i.e. CaR
Board)

• Library implementing
“Human friendly” function to
control daughter board

• SetPowerOn/Off
• ReadCurrent
• ProgramClock
• SendPulse
• ReadADC

19/04/2023 9

1010 Open slide master to edit

The Peary Framework

pearyd

Device Manager
• Manage devices that are

instantiated (ex: 1x FEI4, 1
Temperature Sensor, etc.)

19/04/2023 10

1111 Open slide master to edit

The Peary Framework

pearyd

Devices
• Code controlling specific

devices, implemented by
users

• Interface to device specific
firmware

• Registers
• Power, DACs
• Readout

• Implement commands
accessible via Command
Line, server or API

• Contained in 1 C++ class
derived from Template

19/04/2023 11

1212 Open slide master to edit

The Peary Framework

pearyd

Configuration, Logging
• Log of all events in the

framework
• Provide generic mechanism

to load/save configuration of
device

19/04/2023 12

1313 Open slide master to edit

The Peary Framework

pearyd

User space
• Command line interface to

the framework (inside
ZC706)

• TCP Client/Server CLI
equivalent

• Python binding for simple
scripting

19/04/2023 13

1414 Open slide master to edit

Firmware
Minimal Core Image : https://gitlab.cern.ch/bnl-caribou/cariboucore

– Processor configured for CaR Board
– Firmware IP to read FW version
– Base script for project generation, CI

Device specific IP in separate repo,
packaged using Vivado IP integrator
• can be included as sub-modules in

your FW git project
• Can be integrated via Board design

or in wrapper

Ex:
https://gitlab.cern.ch/ATLASPix/ATLA
SPix3FW

19/04/2023 14

https://gitlab.cern.ch/bnl-caribou/cariboucore
https://gitlab.cern.ch/ATLASPix/ATLASPix3FW
https://gitlab.cern.ch/ATLASPix/ATLASPix3FW

1515 Open slide master to edit

Happy users!

1616 Open slide master to edit

1717 Open slide master to edit

CaRIBOu v2.0 plans

17

• In order to adapt to the new needs of the users, a new platform based on
Enclustra XU1 SOM (ZynqMP) is planned :

• Cost reduction by using minimal SOM with reduced cost with regard to
ZC706

• Increase in PL resources
• Increased bandwidth for High-Speed IOs , for output to DAQ
• Add USB host capabilities
• Additional general purpose IOs
• Adapt signals, power and voltage bias to new technologies beyond

65nm
• 64bit processor and additional processing power
• Add temperature monitoring for test-beam, lab characterization needs
• Integration with modern Xilinx tools

• Preliminary results with similar platform (FETB2) designed at BNL show
promising results to achieve these specifications in CaRIBOu v2.0

Enclustra XU1

FETB2 (Pre-prototyping for CaRIBOu v2.0)

The RD50 Collaboration and ALPIDE 65nm have shown interests in using the future system for
their developments
• Part of CERN EP R&D as part of WP 1.4 “Si Simulation and Characterization” with strong link

to WP 1.1 and 1.2, hybrid and monolithic pixel detectors
• Strong requirements from pixel R&D for large bandwidth, analog signal processing, timing and

more system integration
• Realization of ADC Add-on,10 Gbps Network FW examples very well within BNL

competences

1818 Open slide master to edit

CARIBOu 2.0
Proposal Synchronization

Programming and debugging

Slow Control/IO

Hi-Speed IO (4x10Gbps)

built-in low noise PSU

The system also includes :

• Internal and external Temperature
and voltage monitoring

• Si5345 Jitter cleaner for clock
generation and processing

• Full support for USB3.0 (to plug
HDD, keyboard etc.)

• SD Card reader for OS, data, FW

• Interface to DUT via HPC/LPC
connector

• HPC FMC Implementing VITA
standard for possible connection
of commercial FMC Cards such as
ADCs

1919 Open slide master to edit

CARIBOu 2.0 Power/ Supplies
8 x High power

• 2 quadrant
• -10V to +10V
• -1A to +1A
• 4mV step size
• Manually controlled (by hand) polarity

8 x Low power
• 2 quadrant
• -10V to +10V
• -200mA to +200mA
• 10uV step size
• 250nA step size
• Values are targeted and TBC, low power still being designed

8 x Bias voltages/currents:
• 0V to +5V
• -5mA to +5mA
• 2mV step size
• DAC outputs, TBC, may be converted to low power supplies, only power limited

2020 Open slide master to edit

CARIBOu 2.0 usage methods

2121 Open slide master to edit

CARIBOu 2.0 Software
We build the OS for FETBv2/CARIBOu 2.0 with Xilinx petalinux-tools
• Layer on top of Yocto to simplify some of the process
• Take care of tools installation, go support, deploy scripts for

startup etc..
• https://github.com/mathieubenoit/FETB2_15EG_OS

Slow Control/API for CARIBOu 2.0 will be implemented by
CERN/DESY/ORNL in Python/C++ and run inside the PL
• Client/Server configuration possible, but system can be standalone
• For more computing intensive activities (Readout, processing, ML/AI

etc., IO to ROOT files etc), other language like Go, C++ can provide
executable that run natively in ARM processor

https://github.com/mathieubenoit/FETB2_15EG_OS

2222 Open slide master to edit

Conclusion and perspective
The CARIBOu 2.0 platform is currently under design, based on our

experience with the FETB2, that already integrates an Enclustra
XU1 FPGA
• The goal of the system is to “avoid re-inventing the wheel”
• The system is supported by a community of users, which facilitate

debugging, code and experience sharing
• Important software and firmware developed in common between

users, avoiding work duplication and favoring more robust code
• The system is versatile, from a simple standalone tabletop

measurements to large bandwidth system interconnecting with a
DAQ like FELIX, it allows to naturally progress towards a final design

• With proper design of FW/SW/HW, this system and the work done can
be carried up to the final system/RDO

Backup

2424 Open slide master to edit

The FETBv2 Firmware

• JESD Interface for ADC with readout at full throughput
– Synchronization between ADCs
– Common clocking via Si5345 Chip

• ADC decoding and data sorting

• ADC Data stream to AXI-Stream
– Achieve bandwidth of ~1.4GB/s to RAM -> 2xADC @ 40MHz

• Pulser IP with AXI-programmable MMCM for phase scan with
0.01º resolution.

24

2525 Open slide master to edit
25

SW in Go

2626 Open slide master to edit

Goals of Go

• Provide a simple language in terms of syntax
– Syntax similar to python, C, Java

• Provide an easy method to deal with modern
multi-processor architecture to maximize its
usage
– The language provides mechanism to simply handle

concurrency and parallelism issues
• Provide the speed of a compiled language,

and the feeling and ease of use (libraries etc.)
of a compiled language
– Large set of standard libraries covering the needs of

a modern software
• Provide ease of deployment via the use of

static linking

26

2727 Open slide master to edit

Go language in a nutshell

• The go language is an object-oriented
language, but not in the common sense

– No classes, inheritance, polymorphism
– Types can be attributed methods
– Object-Oriented concept via Interfaces
– Functions are objects

• The language is strongly typed
– Conversion between types always explicit

• The language is not sensitive to indentation

27

2828 Open slide master to edit

The go environment

The go compiler can be downloaded and installed for any platform and
architecture from www.golang.org

• The compiler comes with all the tools required to develop in the go
langage : Compiler, formatter, linter, code checker, profiler , tracer,
tester, coverage and version control integration
– It is recommended to use an IDE such as Visual code to make most use of the

tools

• The go language is statically linked, so the executable produced are
standalone and contain all the code needed to run

• The compiler can produce executable for any platform that run the
go compiler (for example Linux ARM64)

28

http://www.golang.org/

2929 Open slide master to edit

Go libraries

The go standard library provides a
wide array of tools to produce
quickly modern code, not usually
available in standard lib in other
languages :
– Stats, math functions, logging and

error handling
– http, tcp server client handling
– Cipher, cryptography etc …
– File readers and writer

(JSON,YAML,HDF etc…)
– Image handling etc..

Libraries can be used simply by
adding their URL to the code,
the go compiler will fetch and
compile them for you

29

Standard libs

Additional libs

3030 Open slide master to edit

Example : DAQ

In this example, we show
how to use buffered
channel to maximize
the throughput of the
system by using all
threads to average
waveform and write
them to disk (in ROOT
format!)

In a second step, we show
how a few line of code
can change this
application into a
heterogenous client
server application

30

Data
Generator DCS Generator

Averager

DCS WriterWaveform
Writer

3131 Open slide master to edit

Example : DAQ

In this example, we show
how to use buffered
channel to maximize the
throughput of the system
by using all threads to
average waveform and
write them to disk (in ROOT
format!)

In a second step, we show
how a few line of code
can change this
application into a
heterogenous client server
application, using cross-
compilation features of
the go compiler

31

Data
Generator DCS Generator

Averager

DCS WriterWaveform
Writer

Client

Server

Struct via TCP

arm64

X86_64

3232 Open slide master to edit

Writing to ROOT file

32

3333 Open slide master to edit

FETBv2 DCS Monitoring

DCS Consist of measurements from two sources :
• Internal to FETB2 (read via I2C)

– INA228, MAX Temperature chip (including 3 external NTC for ALFE2,
etc.)

– Power and Voltages from INA228

• External (Read via SCPI over Ethernet)
– Keysight power supplies

The DCS runs in the FETB2 and act as an HTTP server that display
the live results of measurements
• A log of all event is stored in a ROOT Tree/File

33

3434 Open slide master to edit

DCS

34

3535 Open slide master to edit

FETB2 Software

35

Functionalities of the SW implemented via tools
• Noise Scan
• Linearity Scan
• Peaking Time Scan
• Baseline Scan
• etc.

The underlying libraries allow the scripting of the main board functionalities
• Pulser controller
• DAQ Controller (steer data acquisition)
• MMCM Controller
• Slow Control Register controller

The various controllers are integrated into a top controller exposing the
required function to manipulate the FETB2 State : FETB2 Controller

3636 Open slide master to edit

Scans

36

Each type of scan are based on a common template
in 4 steps :
• Initialization of the FETB2 controller
• Scanning step : Acquisition of the required data
• Analysis step : Perform analysis of acquired data
• Writing Results : Write results and raw data to a

ROOT file

The parameters of each scans are described in a
YAML file that can easily be edited to change scan
parameters

Linearity Scan

Noise Scan

3737 Open slide master to edit

Noise Scan

37

• Perform a baseline measurement with a large amount of sample (ie: 65536)
• Perform a pulse injection and measure pulse using a delay scan
• Extract gain from delay scan, noise and baseline from noise waveform
• Compute ENI, FFT
• Write raw data, FFT(optional),Analysis results to ROOT file, CSV

Execution time (18 phases, 16 averaging, 65536 samples) 1.7s
• 500ms for analysis
• 970ms to write data to disk
• 800ms for optional FFT

3838 Open slide master to edit

FFT

38

3939 Open slide master to edit

Noise

39

4040 Open slide master to edit

Pulse

40

4141 Open slide master to edit

Linearity Scan

41

• Perform a pulse injection and measure pulse using a delay scan for each
injection in the range

• Extract pulse baseline and amplitude, do linearity fit and extract INL
• Write raw data.Analysis results to ROOT file, CSV

Execution time (18 phases, 16
averaging, 18 steps) 4s

• 2.5s data acquisition
• 300ms analysis
• 1.15s to write all data to disk

4242 Open slide master to edit
42

4343 Open slide master to edit

Peaking Time Scan

43

• Perform a pulse injection and measure pulse using a delay scan for each
injection in the range , for each register value in range

• Extract pulse baseline and amplitude and peaking time
• Write raw data.Analysis results to ROOT file, CSV

Execution time (18 phases, 16 averaging, 18 steps, 10 DAC values) 76s

4444 Open slide master to edit
44

4545 Open slide master to edit

Ressources to learn Go

Basic, interactive online introduction :
• https://tour.golang.org/welcome/1

Interesting video that go a bit more in depth :
https://research.swtch.com/gotour
https://vimeo.com/53221560
https://www.youtube.com/watch?v=f6kdp27TYZs

Installing go : https://golang.org/doc/install 45

https://tour.golang.org/welcome/1
https://research.swtch.com/gotour
https://vimeo.com/53221560
https://www.youtube.com/watch?v=f6kdp27TYZs
https://golang.org/doc/install

4646 Open slide master to edit

Code examples

• Various simple wrappers for interfaces such as I2C, SPI, AXI,
SCPI memory access, etc.
– https://gitlab.cern.ch/bnl-omega-go

• Small tool to configure Si5345
– https://gitlab.cern.ch/bnl-omega-go/si5345tool

• Small tool for INA228
– https://gitlab.cern.ch/bnl-omega-go/ina228tool

46

https://gitlab.cern.ch/bnl-omega-go
https://gitlab.cern.ch/bnl-omega-go/si5345tool
https://gitlab.cern.ch/bnl-omega-go/ina228tool

4747 Open slide master to edit

Autocorrelation

47

In the autocorrelation formula, there is a nested loop that can take a lot of
computing time for long waveform.

To make use of all CPU on a machine, we launch a goroutine for each
coefficient k, sent the result via a channel, and gather the result to
communicate to the writer .

Notice , no mention of mutex, semaphore etc… Here, channel are used
to handle concurrency. The Data handle the thread synchronization,
instead of thread handling data synchronization in usual languages

https://gitlab.cern.ch/BNL-
ATLAS/larphase2/analysistools/gowfanalys
is/-/tree/master/autocorrelation

https://gitlab.cern.ch/BNL-ATLAS/larphase2/analysistools/gowfanalysis/-/tree/master/autocorrelation
https://gitlab.cern.ch/BNL-ATLAS/larphase2/analysistools/gowfanalysis/-/tree/master/autocorrelation
https://gitlab.cern.ch/BNL-ATLAS/larphase2/analysistools/gowfanalysis/-/tree/master/autocorrelation

4848 Open slide master to edit

Interfaces

Using the Reader and Writer interfaces, we can implement many
different reader and writer, as long as they expect the same bytes in
input or output, this way we implement :

• TXT reader, get waveform from txt file
• Random reader, get random generated signal
• Sine Reader, generate a sine signal
• CSV reader, read a CSV using standard library

• TXT file writer
• CSV writer (using standard library)
• Cipher writer (encrypting data !)
• PlotWriter , sending data to a plot in PNG

48

4949 Open slide master to edit

Trace in single thread mode

49

5050 Open slide master to edit

Trace in multithreaded mode

50

5151 Open slide master to edit

Data struct for IO

51

5252 Open slide master to edit

Averaging on all CPU efficiently

52

Display rate every 500ms

If we have put enough
waveform in the buffer,
launch an Average
goroutine to digest it

Tick generate an event on a
channel tick.C every 500 ms

5353 Open slide master to edit

Assembling the code

53

Channels with buffers
with depth 100

Go routines for each
steps

5454 Open slide master to edit

Sending struct over network

54

5555 Open slide master to edit

Receiving struct over network

55

5656 Open slide master to edit

Writing to ROOT file

56

5757 Open slide master to edit

Go concepts type and variables

• Basic types are similar to other languages :
– int, float, bool, string, byte (uint8), rune (uint32), complex

• Composite types are also provided
– Struct, slice (array), map, channel, error

• Types always have a default value
– 0 for int, 0.0 for float, nil for composite objects like error

• Variable can be instantiated explicitly or implicitly

57

5858 Open slide master to edit

Types interface and functions

In go, any types can be attributed functions, some special
functions, called Interfaces, define specific type of behavior for
your type , for example the Stringer Interface :

58

In go, any type that implement the function String() that return a string,
implements the stringer interface , which is itself a special kind of type.
Interfaces are an extremely simple, yet extremely powerful concept in go

5959 Open slide master to edit

Example

59

Here fmt.Println
expect interfaces

6060 Open slide master to edit

Other common interfaces

60

Something that read n bytes into p

Something that write p

Something that has a color

A type of error that occured

https://gist.github.com/asukakenji/ac8a056
44a2e98f1d5ea8c299541fce9

https://gist.github.com/asukakenji/ac8a05644a2e98f1d5ea8c299541fce9
https://gist.github.com/asukakenji/ac8a05644a2e98f1d5ea8c299541fce9

6161 Open slide master to edit

Channels

Channels are a typed conduit through which
you can send and receive values with the
channel operator, <-

61

Reading from a channel is a blocking operation, the process will stop until
data is available on the channel

Channels can be passed to functions, and returned by them

6262 Open slide master to edit

Channels

Channels can also be buffered :

62

Channels are a key concept to implement concurrency and parallelism in go

6363 Open slide master to edit

Select statements

A select statement is used to have the current
process wait for communication operation
from channels :

63

The process wait until of of the channel send data, if multiple have
data, the execution is random

6464 Open slide master to edit

Goroutines

The final building block of golang are
goroutines. A Goroutine is a light-weight
thread that is managed by go at runtime

64

