
Roman Pots Matrix R&D
Meeting – DD4HEP

Implementation
Friday, March 10th, 2023 (updated: March 21st)

Alex Jentsch

Preliminaries

• The EICrecon issue was worse than I thought, and took some time to fix.
• When the algorithm was “ported” from Juggler/Gaudi, a “factory” was never written to

actually use it.
• Additionally, the way in which Roman Pots reconstruction must be carried-out is

fundamentally at-odds with how EICrecon is intended to function.

• Good news: The static matrix implementation is now fully-functional in DD4HEP.
• https://github.com/eic/EICrecon/pull/536

• Next few slides are to go through what is actually there, and how to use it.

Setting up the environment (assuming Mac + Docker)

• Start eic-shell, and make sure to upgrade the container.
• Once in eic-shell, setup the environment.
• Now, let’s go ahead and make a test sample with the

particle gun.

./eic-shell --upgrade

source /opt/detectors/setup.sh

Very helpful tutorial page: https://eic.github.io/tutorial-jana2/aio/index.html

npsim --compactFile ${DETECTOR_PATH}/epic_ip6_arches.xml --enableGun --gun.particle proton --
gun.energy 275*GeV --crossingAngleBoost -0.025 --gun.thetaMin 0.002 --gun.thetaMax 0.005 --
gun.distribution uniform --runType run --numberOfEvents 1000 --outputFile test.edm4hep.root

The filename is intentional – naming it [name].edm4hep.root puts the output into the PODIO format which EICrecon requires.
• This will take a little more than an hour to run, and produce a ~100MB output file.
• You can change the thetaMin angle, I set it to 2mrad to just ensure the particle hit the detector for now.

https://eic.github.io/tutorial-jana2/aio/index.html

Now for the EICrecon part

• EICrecon part:
• Clone the EICrecon repo.
• Now, perform the compilation.
• Then, source your installation (assuming you’re

already in the EICrecon directory).
• Now, you can run EICrecon with your test input

file.
• It will produce an output file with the name you

specify, but if you don’t supply an output file, it will
produce a file with the default name of
“podio_output.root”.

Very helpful tutorial page: https://eic.github.io/tutorial-jana2/aio/index.html

git clone https://github.com/eic/EICrecon

cd EICrecon
cmake -S . -B build
cmake --build build --target install -- -j4

At this point, you will have a full installation of the current build of EICrecon.

BUT, the container HAS the nightly build, so why do we want our own
installation? à So we can make our changes and upgrades!

source ./bin/eicrecon-this.sh

eicrecon test.edm4hep.root -Ppodio:output_file=out.root

https://eic.github.io/tutorial-jana2/aio/index.html

So what exists for the Roman Pots now?
Starting in EICrecon/src/detectors/RPOTS/

RPOTS.cc
RomanPotsReconstruction_factory.cc
RomanPotsReconstruction_factory.h

General code for steering the pieces together.

Where the input collection comes in, and the hits
are process through the reco algorithm, and then
stored to a vector for analysis.

Notes:
• The “algorithm” is supposed to be called by the factory, but currently we cannot pass collections to algorithms, which does

not work for us (we need a collection of hits to do the reco).
• The input hits are truly at generator level – they are not properly digitized (that’s our next task J).
• The calculations are done in global coordinates à need to do things in local coordinate system (second task J).
• This is using the “static” matrix describing the 275 GeV proton orbit (really, describing all three main hadron orbits down

to a few microns.
• Will update with dynamic approach (third task).

Pitfalls

• When you make a new factory in EICrecon, the PODIO
guys need to know you have a new ”collection” collection
for them to handle.
• You cannot just make a new factory without updating the

PODIO code.
• This is not remotely obvious, and I could not find it

documented anywhere (thanks to Dmitry Romanov for helping
me solve this).

• Your input collection also needs to be correctly associated
to the “tag”.
• “ForwardRomanPotHits” are “edm4hep::SimTrackerHit”

objects.
• These will need to be properly digitized as part of the next step.

EICrecon/src/services/io/podio/JEventProcessorPODIO.cc

What do I mean by digitization?

• Digitization takes the information the GEANT
produces, and turns it into a mimicked signal in you
simulated detector.
• In DD4HEP, we draw a rectangle of silicon, make it

“active”, and provide it with some segmentation
(e.g. 500um pixels).
• What this means is that DD4HEP takes your rectangle, and

chops it up into 500um pixels “on paper”, and does
nothing else with it.

• Each pixel is simply assigned a “CellID”.
• Our job is to take the hit information with the CellIDs and

use that to properly account for the fact that we don’t
know (in real life) where the hit occurred on the pixel.

• We then make a new collection of hits reflecting that
uncertainty.

Cartoon of proton passing through silicon
plane, and depositing a bit of energy.

Next Steps
1) General cleanup of static reco code + conversion to local coordinates (easy

task). à now complete.
2) Digitization of hits, and definition of digitized hit collection (medium task).
3) In parallel, I will work to get the dynamic matrix code staged and figure out its

implementation in the DD4HEP setup.
• Need to investigate what linear algebra package we have in DD4HEP.

4) Begin looking at ML algorithms which match our needs, and discuss with
software group.

Some additional resources:
https://indico.bnl.gov/event/18359/
https://indico.bnl.gov/event/18373/

https://indico.bnl.gov/event/18359/
https://indico.bnl.gov/event/18373/

Discussion

